CHF 118.00
Near Infrared Detectors Based on Silicon Supersaturated with Transition Metals
zur Produkt-Seite
21926778 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/!aHR0cHM6Ly9pLndlbHRiaWxkLmRlL3AvbmVhci1pbmZyYXJlZC1kZXRlY3RvcnMtYmFzZWQtb24tc2lsaWNvbi0zNzMyMzczNTIuanBn","post_title":"Near Infrared Detectors Based on Silicon Supersaturated with Transition Metals","deeplink":"https:\/\/track.adtraction.com\/t\/t?a=1632201226&as=1592767275&t=2&tk=1&url=https:\/\/www.weltbild.ch\/artikel\/x\/_41969630-1","labels":[],"brand_id":1,"post_content":"","merchants_number":1,"ean":9783030638283,"category_id":1,"size":null,"min_price":118,"low_price_merchant_id":27291482,"ID":21926778,"merchants":["weltbild"],"brand":"undefined","slug":"near-infrared-detectors-based-on-silicon-supersaturated-with-transition-metals-1","url":"\/produkt\/near-infrared-detectors-based-on-silicon-supersaturated-with-transition-metals-1\/","low_price_merchant_name":"Weltbild"}
CHF 299.00
Narrow-gap II-VI Compounds for Optoelectronic and Electromagnetic Applications
Part One: Growth techniques. Bulk growth techniques. Liquid phase epitaxy. Metal-organic vap our phase epitaxy. Molecular beam epitaxy of HgCdTe. Part Two: Materials characterisation. Optical properties of MCT. Transport properties of narrow-gap II-VI compounds. Intrinsic and extrinsic doping. Point defects in narrow-gap II-VI compounds. Diffusion in narrow-gap II-VI compounds. Surfac... zur Produkt-Seite
19768268 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvZjgvMGIvMGIvMjI2NzI4NDYwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvZjgvMGIvMGIvMjI2NzI4NDYwMDAwMUFfNjAweDYwMC5qcGc=","post_title":"Narrow-gap II-VI Compounds for Optoelectronic and Electromagnetic Applications","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9780412715600&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Ftechnik%2F418369%2Fnarrow-gap-ii-vi-compounds-for-optoelectronic-and-electromagnetic-applications%3FsPartner%3Dtoppreise","labels":[],"brand_id":36392,"post_content":"Part One: Growth techniques. Bulk growth techniques. Liquid phase epitaxy. Metal-organic vap our phase epitaxy. Molecular beam epitaxy of HgCdTe. Part Two: Materials characterisation. Optical properties of MCT. Transport properties of narrow-gap II-VI compounds. Intrinsic and extrinsic doping. Point defects in narrow-gap II-VI compounds. Diffusion in narrow-gap II-VI compounds. Surfaces\/interfaces of narrow-gap II-VI compounds. Trends in structural defects in narrow-gap II-VI semiconductors. Quantum wells and superlattices. Properties of diluted magnetic semiconductors. Part Three: Device applications. Photoconductive detectors in HgCdTe and related alloys. Photovoltaic IR detectors. Non-equilibrium devices in HgCdTe. Emission devices. Photoelectromagnetic, magnetoconcentration and Dember infrared detecors. Solar cells based on CdTe. Radiation detectors. Index.","merchants_number":1,"ean":9780412715600,"category_id":1,"size":null,"min_price":299,"low_price_merchant_id":70255345,"ID":19768268,"merchants":["euniverse"],"brand":"Springer Netherlands","slug":"narrow-gap-ii-vi-compounds-for-optoelectronic-and-electromagnetic-applications","url":"\/produkt\/narrow-gap-ii-vi-compounds-for-optoelectronic-and-electromagnetic-applications\/","low_price_merchant_name":"eUniverse"}
CHF 132.50
Engineering of Scintillation Materials and Radiation Technologies: Selected Articles of ISMART2018
Part 1 Fundamental Studies.- Fast Processes in Scintillators.- Transient phenomena in scintillation materials.- Fluctuations of Track Structure and energy Resolution of Scintillators.- New properties and prospects of Hot Intraband Luminescence for fast timing.- Part 2 Material Science.- Ceramic scintillation materials - approaches, challenges and possibilities.- Disordered garnet str... zur Produkt-Seite
19732707 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvMjkvOWQvNmIvODc0MDc4NjMwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvMjkvOWQvNmIvODc0MDc4NjMwMDAwMUFfNjAweDYwMC5qcGd8fnxodHRwczovL2kud2VsdGJpbGQuZGUvcC9lbmdpbmVlcmluZy1vZi1zY2ludGlsbGF0aW9uLW1hdGVyaWFscy1hbmQtcmFkaWF0aW9uLTMxMzMzOTg5Mi5qcGc=","post_title":"Engineering of Scintillation Materials and Radiation Technologies: Selected Articles of ISMART2018","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9783030219727&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Fphysik-astronomie%2F393837%2Fengineering-of-scintillation-materials-and-radiation-technologies-selected-articles-of-ismart2018%3FsPartner%3Dtoppreise","labels":[],"brand_id":434690,"post_content":"Part 1\u00a0Fundamental Studies.-\u00a0Fast Processes in Scintillators.- Transient phenomena in scintillation materials.-\u00a0Fluctuations of Track Structure and energy Resolution of Scintillators.-\u00a0New properties and prospects of Hot Intraband Luminescence for fast timing.-\u00a0Part 2\u00a0 Material Science.-\u00a0Ceramic scintillation materials - approaches, challenges and possibilities.-\u00a0Disordered garnet structure scintillation materials for novel detectors of ionizing radiation.-\u00a0Garnet crystal growth in non-precious metal crucibles.-\u00a0Part 3 Technology and Production.-\u00a0Towards new production technologies: 3D printing of scintillators.-\u00a0Enriched\u00a040Ca100MoO4\u00a0single crystalline material for search of neutrinoless double beta decay.-\u00a0Plastic scintillators with the improved radiation hardness level.-\u00a0Part 4\u00a0 Detector Solutions.-\u00a0Application of scintillation detectors in cosmic experiments.-\u00a0Neutron cross section measurements with diamond detector.-\u00a0Investigation of the properties of the heavy scintillating fibers for their potential use in hadron therapy monitoring.-\u00a0Development of a submillimeter portable gamma-ray imaging detector, based on a GAGG:Ce - silicon photomultiplier array.-\u00a0Application scintillation comparators for calibration low intense gamma radiation fields by dose rate in the range of 0.03 - 0.1 \u00b5Sv\/h.-\u00a0Antineutrino Detectors.-\u00a0Part 5 Instrumentation.-\u00a0Development of the X-ray security screening systems at ADANI.-\u00a0Optimization of physico-topological parameters of dual energy X-ray detectors applied in inspection equipment.-\u00a0Control of organ and tissue doses to patients during Computed Tomograph.-\u00a0Information Tool for Multifarious Scientific and Practical Research.-\u00a0Calibration and performance of the CMS electromagnetic calorimeter during the LHC Run II.-\u00a0Study the applicability of neutron calibration facility for spectrometer calibration as a source of gamma rays with energies to 10 MeV.-\u00a0Thermal neutron detector based on LaOBr:Ce\/LiF.-\u00a0Specifics of 3D-printed electronics.\u00a0\u00a0\u00a0","merchants_number":2,"ean":9783030219727,"category_id":1,"size":null,"min_price":132.5,"low_price_merchant_id":70255345,"ID":19732707,"merchants":["euniverse","weltbild"],"brand":"Springer Berlin,Springer International Publishing,Springer","slug":"engineering-of-scintillation-materials-and-radiation-technologies-selected-articles-of-ismart2018-2019","url":"\/produkt\/engineering-of-scintillation-materials-and-radiation-technologies-selected-articles-of-ismart2018-2019\/","low_price_merchant_name":"eUniverse"}
CHF 111.00
Thin Film Device Applications
1. Thin Film Technology. An Introduction.- 1.1. Why Thin Films?.- 1.2. Thin Film Growth Process.- 1.2.1. Structural Consequences of the Growth Process.- 1.2.2. Solubility Relaxation.- 1.3. Vapor Deposition Techniques.- 1.3.1. Physical Vapor Deposition (PVD).- 1.3.2. Chemical Vapor Deposition (CVD).- 1.4. Solution Deposition Techniques.- 1.4.1. Chemical Solution Deposition (CSD).- 1.4.... zur Produkt-Seite
19686128 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvMWMvNzYvNjYvNDI5MTIwODIwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvMWMvNzYvNjYvNDI5MTIwODIwMDAwMUFfNjAweDYwMC5qcGc=","post_title":"Thin Film Device Applications","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9781461336846&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Ftechnik%2F366513%2Fthin-film-device-applications%3FsPartner%3Dtoppreise","labels":[],"brand_id":436586,"post_content":"1. Thin Film Technology. An Introduction.- 1.1. Why Thin Films?.- 1.2. Thin Film Growth Process.- 1.2.1. Structural Consequences of the Growth Process.- 1.2.2. Solubility Relaxation.- 1.3. Vapor Deposition Techniques.- 1.3.1. Physical Vapor Deposition (PVD).- 1.3.2. Chemical Vapor Deposition (CVD).- 1.4. Solution Deposition Techniques.- 1.4.1. Chemical Solution Deposition (CSD).- 1.4.2. Electrochemical Deposition (ECD).- 1.5. Thick Film Deposition Techniques.- 1.5.1. Liquid-Phase Epitaxy (LPE).- 1.5.2. Screen Printing.- 1.5.3. Melt Spinning.- 1.5.4. Dip Coating, Spinning, and Solution Casting.- 1.6. Monitoring and Analytical Techniques.- 1.6.1. General Remarks.- 1.6.2. Deposition Rate and Thickness Measurement.- 1.6.3. Structural Analysis.- 1.6.4. Composition Analysis.- 1.7. Microfabrication Techniques.- 2. Thin Films In Optics.- 2.1. Optics of Thin Films.- 2.2. Antireflection Coatings (AR Coatings).- 2.2.1. Single-Layer AR Coatings.- 2.2.2. Double-Layer AR Coatings.- 2.2.3. Multilayer and Inhomogeneous AR Coatings.- 2.3. Reflection Coatings.- 2.3.1. Metal Reflectors.- 2.3.2. All-Dielectric Reflectors.- 2.4. Interference Filters.- 2.4.1. Edge Filters.- 2.4.2. Band-Pass Filters.- 2.5. Thin Film Polarizers.- 2.6. Beam Splitters.- 2.6.1. Polarizing Beam Splitter.- 2.6.2. Dichroic Beam Splitter.- 2.7. Integrated Optics.- 2.7.1. Waveguides.- 2.7.2. Thin Film Optical Components.- 2.7.3. Passive Devices: Couplers.- 2.7.4. Active Devices.- 3. Optoelectronic Applications.- 3.1. Introduction.- 3.2. Photon Detectors.- 3.2.1. Photoconductive Detectors.- 3.2.2. Photoemissive Detectors.- 3.3. Photovoltaic Devices.- 3.3.1. Solar Cells: General Analysis.- 3.3.2. Thin Film Solar Cells.- 3.4. Applications in Imaging.- 3.5. Electrophotography (Xerography and Electrofax).- 3.6. Thin Film Displays.- 3.6.1. Electroluminescent (EL) Displays.- 3.6.2. Electrochromic Displays.- 3.7. Information Storage Devices.- 3.7.1. Introduction.- 3.7.2. Optical Hole Memories.- 3.7.3. Holographic Memories.- 3.8. Amorphous Silicon-Based Devices.- 4. Microelectronic Applications.- 4.1. Introduction.- 4.2. Thin Film Passive Components.- 4.2.1. Electrical Behavior of Metal Films.- 4.2.2. Dielectric Behavior of Insulator Films.- 4.2.3. Resistors.- 4.2.4. Capacitors.- 4.2.5. Inductors.- 4.2.6. Conductors (Interconnections and Contacts).- 4.3. Thin Film Active Components.- 4.3.1. Thin Film Transistor (TFT).- 4.3.2. Thin Film Diodes.- 4.4. Thin Film Integrated Circuits.- 4.5. Microwave Integrated Circuits (MICs).- 4.6. Surface Acoustic Wave (SAW) Devices.- 4.6.1. Introduction.- 4.6.2. SAW Transducer.- 4.6.3. SAW Delay Line.- 4.6.4. SAW Band-Pass Filter.- 4.6.5. SAW Pulse-Compression Filter.- 4.6.6. SAW Amplifier.- 4.6.7. SAW Guiding Components.- 4.6.8. Other Applications.- 4.7. Charge-Coupled Devices (CCDs).- 4.7.1. Introduction.- 4.7.2. Principle.- 4.7.3. Applications.- 4.8. Thin Film Strain Gauges.- 4.9. Gas Sensors.- 5. Magnetic Thin Film Devices.- 5.1. Magnetic Thin Films.- 5.1.1. Introduction.- 5.1.2. Uniaxial Anisotropy (UA).- 5.1.3. Domains and Domain Walls.- 5.1.4. Switching in Thin Films.- 5.2. Applications.- 5.2.1. Computer Memories.- 5.2.2. Domain-Motion Devices.- 5.2.3. Thin Film Magnetic Heads.- 5.2.4. Magnetic Displays.- 6. Quantum Engineering Applications.- 6.1. Introduction.- 6.2. Basic Concepts.- 6.3. Superconductivity in Thin Films.- 6.4. S-N Transition Devices.- 6.4.1. Switching Devices.- 6.4.2. Cryotron Amplifiers.- 6.4.3. Computer Memory Devices.- 6.5. Superconductive Tunneling Devices.- 6.5.1. Quasiparticle (Giaever) Tunneling.- 6.5.2. Pair (Josephson) Tunneling.- 6.5.3. SQUIDs.- 6.5.4. Applications of SQUIDs.- 6.5.5. Superconducting Electronics.- 6.6. Miscellaneous Applications.- 7. Thermal Devices.- 7.1. Introduction.- 7.2. Thermal Detectors.- 7.2.1. Bolometers and Thermometers.- 7.2.2. Thermocouples and Thermopiles.- 7.2.3. Pyroelectric Detectors.- 7.2.4. Absorption-Edge Thermal Detectors.- 7.3. Thermal Imaging Applications.- 7.4. Photothermal C","merchants_number":1,"ean":9781461336846,"category_id":1,"size":null,"min_price":111,"low_price_merchant_id":70255345,"ID":19686128,"merchants":["euniverse"],"brand":"Springer Berlin,Springer US","slug":"thin-film-device-applications","url":"\/produkt\/thin-film-device-applications\/","low_price_merchant_name":"eUniverse"}
CHF 664.90
Prehistoric Gold in Europe
Interest in the study of early European cultures is growing. These cultures have left us objects made of gold, other metals and ceramics. The advent of metal detectors, coupled with improved analytical techniques, has increased the number of findings of such objects enormously. Gold was used for economic and ceremonial purposes and thus the gold objects are an important key to our und... zur Produkt-Seite
18942784 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9hc3NldHMudGhhbGlhLm1lZGlhL2ltZy9hcnRpa2VsLzEyYzdkN2I4NDBhMWEwNjNiNmM4NDczOTkxMTkwYjM2YjUxYTA3OGYtMDAtMDAuanBlZw==!aHR0cHM6Ly9hc3NldHMudGhhbGlhLm1lZGlhL2ltZy9hcnRpa2VsLzEyYzdkN2I4NDBhMWEwNjNiNmM4NDczOTkxMTkwYjM2YjUxYTA3OGYtMDAtMDAuanBlZw==","post_title":"Prehistoric Gold in Europe","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=30362079803&a=401125&m=13971&pref1=9789401512923","labels":[],"brand_id":36392,"post_content":"Interest in the study of early European cultures is growing. These cultures have left us objects made of gold, other metals and ceramics. The advent of metal detectors, coupled with improved analytical techniques, has increased the number of findings of such objects enormously. Gold was used for economic and ceremonial purposes and thus the gold objects are an important key to our understanding of the social and political structures, as well as the technological achievements, of Bronze and Iron Age European societies. A correct interpretation of the information provided by gold and other metal objects requires the cooperation of experts in the fields of social, materials and natural science. Detailed investigation of gold deposits in Europe have revealed the composition and genesis of the deposits as sources of the metal. In Prehistoric Gold in Europe, a group of leading European geoscientists, metallurgists and archaeologists discuss the techniques of gold mining and metallurgy, the socioeconomic importance of gold as coinage and a symbol of wealth and status, and as an indicator of religious habits, as well as a mirror of trade and cultural relations mirrored by the distribution and types of gold objects in prehistoric times.","merchants_number":1,"ean":9789401512923,"category_id":1,"size":null,"min_price":664.8999999999999772626324556767940521240234375,"low_price_merchant_id":70254503,"ID":18942784,"merchants":["orell-fuessli"],"brand":"Springer Netherlands","slug":"prehistoric-gold-in-europe-1","url":"\/produkt\/prehistoric-gold-in-europe-1\/","low_price_merchant_name":"Orell F\u00fcssli"}
CHF 2.99
Moonspender
Lovejoy doesn't mind making an occasional fake... But the wholesale theft of national treasures is not something he can go along with. So when 'moonspenders' - antiques poachers with hi-tech electronic metal detectors - start digging up the ancient buried treasures of his native East Anglia, it's time for Lovejoy to take a stand. As usual, there are some surprising complications, inc... zur Produkt-Seite
10221280 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9hc3NldHMudGhhbGlhLm1lZGlhL2ltZy9hcnRpa2VsLzI2NzlhYWE2ZGZmM2I4MGEzZThmMDFlNGFjMGRkZTIzYmI5MmRlOTAtMDAtMDAuanBlZw==!aHR0cHM6Ly9hc3NldHMudGhhbGlhLm1lZGlhL2ltZy9hcnRpa2VsLzI2NzlhYWE2ZGZmM2I4MGEzZThmMDFlNGFjMGRkZTIzYmI5MmRlOTAtMDAtMDAuanBlZw==","post_title":"Moonspender","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=25179211001&a=401125&m=13971&pref1=9781472119599","labels":[],"brand_id":34112,"post_content":"Lovejoy doesn't mind making an occasional fake... But the wholesale theft of national treasures is not something he can go along with. So when 'moonspenders' - antiques poachers with hi-tech electronic metal detectors - start digging up the ancient buried treasures of his native East Anglia, it's time for Lovejoy to take a stand. As usual, there are some surprising complications, including a local gangster who insists that Lovejoy appear on a TV game show, a few suspicious deaths, a wedding, some local witches, and several women who can't resist Lovejoy's charms. But then, who can? Praise for Jonathan Gash: 'Irrepressible... bounteous entertainment' Sunday Times 'Lovejoy is up to his old tricks again... compelling stuff' Today 'Unabashedly amoral, witty and crammed with treasures of every sort... Pure, unadulterated Lovejoy' Publishers Weekly","merchants_number":1,"ean":9781472119599,"category_id":1,"size":null,"min_price":2.9900000000000002131628207280300557613372802734375,"low_price_merchant_id":70254503,"ID":10221280,"merchants":["orell-fuessli"],"brand":"Little, Brown Book Group","slug":"moonspender","url":"\/produkt\/moonspender\/","low_price_merchant_name":"Orell F\u00fcssli"}
CHF 211.00
Liquid Chromatography in Environmental Analysis
1 Quality Assurance in Environmental Trace Analysis.- 1. The Quality Assurance Program.- 1.1. Objectives of a Quality Assurance Program.- 1.2. Elements Evaluated by the Quality Assurance Program.- 1.3. Management of the Quality Assurance Program.- 1.4. Documentation.- 2. Quality Control Procedures in the Quality Assurance Program.- 2.1. Role of Quality Control Procedures.- 2.2. Blanks... zur Produkt-Seite
19463295 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvNmMvYjQvMzMvMjk0OTAzMTcwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvNmMvYjQvMzMvMjk0OTAzMTcwMDAwMUFfNjAweDYwMC5qcGc=","post_title":"Liquid Chromatography in Environmental Analysis","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9780896030459&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Fchemie%2F295091%2Fliquid-chromatography-in-environmental-analysis%3FsPartner%3Dtoppreise","labels":[],"brand_id":35095,"post_content":"1 Quality Assurance in Environmental Trace Analysis.- 1. The Quality Assurance Program.- 1.1. Objectives of a Quality Assurance Program.- 1.2. Elements Evaluated by the Quality Assurance Program.- 1.3. Management of the Quality Assurance Program.- 1.4. Documentation.- 2. Quality Control Procedures in the Quality Assurance Program.- 2.1. Role of Quality Control Procedures.- 2.2. Blanks, Replicates, and Spiked Samples.- 2.3. Evaluation of Results.- 3. Operation of a Quality Assurance Program.- 3.1. Feedback to the Analyst.- 3.2. Corrective Actions.- 3.3. Quality Assurance Program Changes.- References.- 2 Applications of HPLC to the Analysis of Polycyclic Aromatic Hydrocarbons in Environmental Samples.- 1. Introduction.- 2. Nomenclature, Structure, and Carcinogenicity.- 3. Origin and Formation in the Environment.- 4. Methods of Analysis for Polycyclic Hydrocarbons.- 4.1. Nonpolar Chemically Bonded Stationary Phase.- 4.2. Polar Chemically Bonded Stationary Phase.- 4.3. Separation of PANH, PASH, and Nitro-PAH.- 4.4. Detection and Identification.- 5. HPLC Applications in PAH Analysis.- 5.1. Air Particulates, Fly Ash, Carbon Black, and Coal Tar Pitch.- 5.2. Water and Waste Water.- 5.3. Sediments, Fish, Mussels, and Meat.- 5.4. Petroleum and Synthetic Fuels.- 6. Conclusions.- References.- 3 HPLC of Pesticide Residues in Environmental Samples.- 1. Introduction.- 2. Instrumentation and Methodology.- 2.1. Pumps.- 2.2. Injection Systems.- 2.3. Columns and Column Packing.- 2.4. Detectors.- 2.5. Solvents.- 2.6. Preparation of Derivatives.- 3. Applications.- 3.1. Water.- 3.2. Examples.- 3.3. Soil.- 3.4. Examples.- 3.5. Hydrosoil.- 3.6. Example.- 3.7. Plant Material.- 3.8. Examples.- 3.9. Animal Tissue.- 3.10. Example.- 4. Conclusions.- References.- 4 HPLC Determination of Surfactants and Related Compounds.- 1. Anionic Surfactants and Related Compounds.- 1.1. General Methods.- 1.2. Analysis of Anionic Surfactants in Environmental Samples by Means of HPLC.- 2. Nonionic Surfactants.- 2.1. General Methods.- 2.2. Analysis of Nonionic Surfactants in Environmental Samples by Means of HPLC.- 3. Cationic and Amphoteric Surfactants and Related Compounds.- 3.1. General Methods.- 3.2. Analysis of Cationic Surfactants in Environmental Samples by Means of HPLC.- References.- 5 Trace Metal Analysis by High Performance Liquid Chromatography.- 1. Introduction.- 2. HPLC-Ultraviolet, -Visible, and\/or -Fluorescence Detection of Metal Species.- 3. HPLC-Mass Spectrometric Detection of Metal Species.- 4. HPLC-Atomic Absorption Spectroscopic Detection of Metal Species.- 5. HPLC-Atomic Fluorescence Spectroscopic Detection of Metal Species.- 6. HPLC-Inductively Coupled or -Direct-Current Plasma Emission Spectroscopic Detection of Metal Species.- 6.1 HPLC-Direct-Current Plasma Emission Spectroscopic Detection of Metal Species.- 7. HPLC-Electrochemical and -Conductivity Detection of Metal Species.- 8. Ion Chromatography-Conductivity Detection of Metal Species.- 9. Conclusions.- References.- 6 Anion Analysis by Ion Chromatography.- 1. Introduction.- 2. Separation Modes.- 2.1. High Performance Ion Chromatography (HPIC).- 2.2. Mobile-Phase Ion Chromatography (MPIC).- 2.3. High Performance Ion Chromatography Exclusion (HPICE).- 2.4. Summary of Separation Techniques.- 3. Detection Modes.- 3.1. Fiber Suppressors.- 3.2. Suppression via Precipitation.- 3.3. Other Detection Modes.- 4. New Applications in Anion Ion Chromatography.- 4.1. Cyanide and Cyanide Complexes.- 4.2. Acid Rain Analysis.- 4.3. Trace Iodide Determination.- 4.4. Chromate Determination.- 4.5. Trace Analysis of Bulk Chemicals.- 4.6. Trace Determination of Nitrate.- 4.7. Brine Analysis.- 4.8. Miscellaneous Anion Separations.- 5. Summary.- References.- 7 HPLC Sample Injection and Column Switching.- 1. HPLC Sample Injection Using Valves.- 1.1. Sample Injection onto 2 mm id or Larger HPLC Columns.- 1.2. Injection onto Small Bore (","merchants_number":1,"ean":9780896030459,"category_id":1,"size":null,"min_price":211,"low_price_merchant_id":70255345,"ID":19463295,"merchants":["euniverse"],"brand":"Springer, Berlin","slug":"liquid-chromatography-in-environmental-analysis","url":"\/produkt\/liquid-chromatography-in-environmental-analysis\/","low_price_merchant_name":"eUniverse"}
CHF 189.00
Handbook of Gas Sensor Materials. Vol.1: Properties, Advantages and Shortcomings for Applications. C
Vol. 1. Conventional ApproachesPrefaceChapter 1: Introduction1. Gas sensors and their role in industry, agriculture, medicine and environment control 2. Gas sensors classification3. Requirements to gas sensors4. Comparative analysis of gas sensors5. Materials acceptable for gas sensor applicationsReferencesPart 1. Conventional Gas Sensing MaterialsChapter 2: Metal oxides1. General vi... zur Produkt-Seite
19687817 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvYTkvZTEvYzAvMzgwODQwMDYwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvYTkvZTEvYzAvMzgwODQwMDYwMDAwMUFfNjAweDYwMC5qcGc=","post_title":"Handbook of Gas Sensor Materials. Vol.1: Properties, Advantages and Shortcomings for Applications. C","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9781461471646&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Fchemie%2F369536%2Fhandbook-of-gas-sensor-materials.-vol.1-properties-advantages-and-shortcomings-for-applications.-c%3FsPartner%3Dtoppreise","labels":[],"brand_id":434629,"post_content":"Vol. 1. Conventional ApproachesPrefaceChapter 1: Introduction1. Gas sensors and their role in industry, agriculture, medicine and environment control 2. Gas sensors classification3. Requirements to gas sensors4. Comparative analysis of gas sensors5. Materials acceptable for gas sensor applicationsReferencesPart 1. Conventional Gas Sensing MaterialsChapter 2: Metal oxides1. General view2. Which metal oxides are better for solid state electrochemical gas sensors?3. Metal oxides with ionic conductivity: Solid electrolytes3.1. Criterions for metal oxides application in solid electrolyte-based gas sensors3.2. High temperature oxygen sensors3.3. Solid electrolyte-based hydrogen sensors3.4. Other gases3.5. Limitations of solid electrolytes application in gas sensors4. Semiconducting metal oxides4.1. Metal oxides for chemiresistors4.1.1. Binary metal oxides4.1.2. Complex and mixed metal oxides4.1.3. Metal oxide comparison and selection4.2. Metal oxide p-n homojunction and heterostructures4.3. High temperature oxygen sensors based on semiconducting metal oxides5. Metal oxides for room temperature gas sensors6. Other applications of metal oxides6.1. Pyroelectric-based gas sensors6.2. Thermoelectric-based sensors6.3. Chemochromic materials for hydrogen sensorsReferencesChapter 3: Polymers1. General view2. Polymer-based gas sensors3. Mechanisms of conductivity change in polymer-based gas sensors 4. Ion conducting polymers and their using in electrochemical sensors3. Limitations of polymer using in gas sensors4. Choosing a polymer for gas sensor applicationsReferencesChapter 4: Thin metal films1. Thin metal films in gas sensors2. Disadvantages of sensors and approaches to sensor's parameters improvement ReferencesChapter 5: Semiconductors in gas sensors1. Silicon-based gas sensors2. III-V-based gas sensors3. Wide-band-gap semiconductors4. Porous semiconductors (porous silicon)5. Other semiconductor materials5.1. Thermoelectric materials5.2. II-VI semiconductor compounds5.3. Semiconductor glasses5.3.1. Chalcogenide glasses5.3.2. Other glasses5.4. TelluriumReferencesChapter 6: Solid electrolytes for detecting specific gases1. General view on electrochemical gas sensors2. Ideal solid electrolytes 3. H2 sensors4. CO2 sensors5. NOx sensors6. SOx sensors7. Cross sensitivity of solid electrolyte-based gas sensors and limitations8. Oxygen and other sensors based on fluoride ion conductorsReferencesPart 2: Auxiliary MaterialsChapter 7: Materials for sensor platforms and packaging1. Conventional platforms2. Micromachining hotplates3. Flexible platforms4. Cantilever-based platforms4.1. Silicon-based microcantilevers4.2. Polymer-based microcantilevers5. Paper-based gas sensors6. Material requirements for packaging of gas sensorsReferencesChapter 8: Materials for thick film technologyReferencesChapter 9: Electrodes and heaters in MOX-based gas sensors1. Materials for electrodes in conductometric gas sensors1.1. Electrode influence on gas sensor response1.2. Electrode materials preferable for gas sensor applications2. Electrodes for solid electrolyte-based gas sensors2.1. The role of electrode configuration in solid electrolyte-based gas sensors2.2. Sensing electrodes in solid electrolyte-based gas sensors3. Materials for heater fabricationReferencesChapter 10: Surface modifiers for metal oxides in conductometric gas sensors 1. General consideration2. Sensitization mechanisms 3. Bimetallic catalysts4. Approaches to noble metal cluster formingReferencesChapter 11: Catalysts used in calorimetric (combustion-type) gas sensorsReferencesChapter 12: Filters in gas sensors1. Passive filters2. Catalytically active filters3. Sorbents for gas preconcentratorsReferencesPart 3: Materials for specific gas sensorsChapter 13: Materials for piezoelectric-based gas sensors1. Piezoelectric materials2. SAW devices2.1. Materials for interdigital transducers 3. High temperature devices4. Miniaturization of piezoelectric sensors5. Sensing layers5.1. General requirements5.2. Features of sensing materials used in acoustic wave gas sensorsReferencesChapter 14: Materials for optical, fiber optic and integrated optical sensors1. General view on optical gas sensing2. Fibers for optical gas sensors3. Planar waveguide and integrated optical sensors4. Light sources for optical gas sensors5. Detectors for optical gas sensors6. Other elements of optical gas sensorsReferencesChapter 15: Materials for electrochemical gas sensor with liquid and polymer electrolytes1. Membranes2. Electrolytes3. Electrodes4. Gas diffusion electrodesReferencesChapter 16: Materials for capacitance-based gas sensors1. General discussions2. Polymer based capacitance gas sensors3. Other materials ReferencesChapter 17: Sensing layers in work function type gas sensors1. Work function type gas sensors2. Materials tested by KP2.1. Metallic layers 2.2. Inorganic layers 2.3. Organic layers ReferencesChapter 18: Humidity-Sensitive Materials1. Humidity sensors2. Materials acceptable for application in humidity sensors2.1. Polymers2.2. Metal oxide ceramics2.3. Porous semiconductors (silicon and other)2.4. Other materials and approachesReferencesChapter 19: Materials for field ionization gas sensorsReferencesChapter 20: Gas sensors based on thin film transistors1. Thin film transistors2. Gas sensing characteristics of organic thin film transistors3. Metal oxide-based thin film transistors4. Other materials in thin film transistor-based gas sensorsReferencesVol. 2. New Trends in Materials and TechnologiesTable of contentsPrefacePart 1:Nanostructured Gas Sensing MaterialsChapter 1: Carbon-based nanostructures1. Carbon black2. Fullerenes 3. Carbon nanotubes4. Graphene5. Nanodiamond particlesReferencesChapter 2: Nanofibers1. Approaches to nanofibers preparing2. Nanofiber-based gas sensorsReferencesChapter 3: Metal oxide-based nanostructures1. Metal oxide one-dimensional nanomaterials1.1. 1-D structures in gas sensors1.2. The role of 1-D structures in understanding of gas sensing effect1.3. What kind of 1-D structures is better for gas sensor design?2. Mesoporous, macroporous and hierarchical metal oxide structures ReferencesChapter 4: Metal-based nanostructures1. Metal nanoparticles1.1. Properties 1.2. Synthesis1.3. Gas sensor applications2. Metal nanowires ReferencesChapter 5: Semiconductor nanostructures1. Quantum dots1.1. General consideration1.2. Gas sensor applications of quantum dots2. Semiconductor nanowires2.1. Synthesis of semiconductor nanowires2.1. Gas sensing properties of Si nanowiresReferencesPart 2: Other trends in design of gas sensor materialsChapter 6: Photonic crystals1. Photonic crystals in gas sensors2. Problems in the sensing application of PhCs2.1. Problems on the fabrication of photonic crystal2.2. Problems on the coupling losses2.3. Problems on the signal detectionReferencesChapter 7: Ionic liquids in gas sensorsReferencesChapter 8: Silicate-based mesoporous materials1. Mesoporous silicas1.1. Gas sensor applications of mesoporous silicas2. Aluminosilicates (zeolites)2.1. Zeolites-based gas sensorsReferencesChapter 9: Cavitands1. Cavitands: Characterization 2. Cavitands as a material for gas sensorsReferencesChapter 10: Metallo-complexes1. Gas sensor applications of metallo-complexes2. Approaches to improvement of gas sensor parameters and limitationsReferencesChapter 11: Metal-organic frameworks1. General consideration2. MOFs synthesis3. Gas sensor applications ReferencesPart 3: NanocompositesChapter 12: Nanocomposites in gas sensors: Promising approach to gas sensor optimizationReferencesChapter 13: Polymer based nanocomposites1. Conductometric gas sensors based on polymer composites2. Problems related to application of polymer-based composites in gas sensorsReferencesChapter 14: Metal oxide-based nanocomposites for conductometric gas sensors1 Metal-metal oxide composites2. Metal oxide-metal oxide compositesReferencesChapter 15: Composites for optical sensors1. Dye-based composites1.1. Sol-gel composites1.2. Polymer-based composites2. Metal oxide-based nanocompositesReferencesChapter 16: Nanocomposites in electrochemical sensors1. Solid electrolyte-based electrochemical sensors2. Electrochemical sensors with liquid electrolyte2.1. Polymer-modified electrodes2.2. Carbon-ceramic electrodesReferencesChapter 17: Disadvantages of nanocomposites for application in gas sensorsReferencesPart 4: Stability of Gas Sensing Materials and Related ProcessesChapter 18: The role of temporal and thermal stability in sensing material selectionReferencesChapter 19: Factors controlling stability of polymers acceptable for gas sensor application1. Polymer degradation1.1. Thermal degradation1.2. Oxidative degradation1.2.1. Photochemical oxidation1.2.2. Thermal oxidation1.3. Hydrolytic degradation1.4. Conducting polymers dedoping2. Approaches to polymer stabilizationReferencesChapter 20: Instability of metal oxide parameters and approaches to their stabilization1. The role of structural transformation of metal oxides in instability of gas sensing characteristics 2. The role of phase transformations in gas sensor instability3. Approaches to improvement of metal oxide structure stabilityReferencesChapter 21: Instability of 1-D nanostructures1. Stability of metal and semiconductor 1-D nanowires and nanotubes 2. Stability of carbon-based nanotubes and nanofibersReferencesChapter 20: Temporal stability of porous silicon1. Porous silicon aging2. Temporal stabilization of porous silicon through oxidationReferencesPart 5: Structure and Surface Modification of Gas Sensing MaterialsChapter 23: Bulk doping of metal oxides1. General approach2. Bulk doping influence on response and stability of gas sensing characteristics ReferencesChapter 24: Bulk and structure modification of polymers1. Modifiers of polymer structure1.1. Solvents (porogens)1.2. Cross-linkers1.3. Initiators1.4. Plasticizers2. Approaches to functionalizing of polymer surface2.1. Polymer doping2.2. Polymer grafting2.3. The role of polymer functionalization in gas sensing effectReferencesChapter 25: Surface functionalizing of carbon-based gas sensing materials1. Surface functionalizing of carbon nanotubes and other carbon-based nanomaterials2. The role of defects in graphene functionalizing ReferencesChapter 26: Structure and surface modification of porous silicon1. Structure and morphology control of porous silicon2. Surface modification of porous semiconductors to improve gas-sensing characteristicsReferencesPart 6: Technology and Sensing Material SelectionChapter 27: Technological limitations in sensing material applicationsReferencesChapter 28: Technologies suitable for gas sensor fabrication1. Ceramic technology2. Planar sensors 3. Thick film technology3.1. General description3.2. Powder technology3.2.1. Sol-gel process3.2.2. Gas-phase synthesis3.3. Advantages and disadvantages of thick film technology4. Thin film technology5. Polymer technology5.1. Methods of polymer synthesis5.2. Fabrication of polymer films 6. Deposition on fibers6.1. Specifics of film deposition on fibers6.2. Coating design and toolingReferencesChapter 29: Outlooks: Sensing material selection guideReferencesAcknowledges","merchants_number":1,"ean":9781461471646,"category_id":1,"size":null,"min_price":189,"low_price_merchant_id":70255345,"ID":19687817,"merchants":["euniverse"],"brand":"Springer Berlin,Springer New York,Springer","slug":"handbook-of-gas-sensor-materials-vol1-properties-advantages-and-shortcomings-for-applications-c","url":"\/produkt\/handbook-of-gas-sensor-materials-vol1-properties-advantages-and-shortcomings-for-applications-c\/","low_price_merchant_name":"eUniverse"}