panels kaufen gefunden in Unterhaltung
✖
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste




CHF 51.90
Tarzan. Sonntagsseiten 1949 - 1950
Comic-Abenteuer von Tarzan. In den Jahren 1949 und 1950 zeigt Burne Hogarth nochmals sein grossartiges zeichnerisches Können. Auf den ersten 39 Seiten dieses Buchs sind seine Illustrationen wie gewohnt im Hochformat zu sehen. Ab Seite 969 (10-2-49) muss der Leser das Buch um 90 Grad drehen. Von nun an wurde Hogarth verpflichtet, im sogenannten Half-Page-Format zu zeichnen. Eine Um... zur Produkt-Seite
5533217 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9hc3NldHMudGhhbGlhLm1lZGlhL2ltZy9hcnRpa2VsL2I4MWU2NTU5YzBmNjE3ODhmOGYwYzhhY2Q1MTk1N2ZkMWExNDc1MGMtMDAtMDAuanBlZw==!aHR0cHM6Ly9hc3NldHMudGhhbGlhLm1lZGlhL2ltZy9hcnRpa2VsL2I4MWU2NTU5YzBmNjE3ODhmOGYwYzhhY2Q1MTk1N2ZkMWExNDc1MGMtMDAtMDAuanBlZw==","post_title":"Tarzan. Sonntagsseiten 1949 - 1950","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=25178449801&a=401125&m=13971&pref1=9783939625704","labels":[],"brand_id":1,"post_content":"Comic-Abenteuer von Tarzan. In den Jahren 1949 und 1950 zeigt Burne Hogarth nochmals sein grossartiges zeichnerisches K\u00f6nnen. Auf den ersten 39 Seiten dieses Buchs sind seine Illustrationen wie gewohnt im Hochformat zu sehen. Ab Seite 969 (10-2-49) muss der Leser das Buch um 90 Grad drehen. Von nun an wurde Hogarth verpflichtet, im sogenannten Half-Page-Format zu zeichnen. Eine Ummontage in das Hochformat ist m\u00f6glich, aber nur wenn man den Verlust eines Panels in Kauf nimmt (so z.B. geschehen in der Tarzanreihe des Norbert Hethke Verlags). Erstmals in deutscher \u00dcbersetzung sind hier diese Seiten vollst\u00e4ndig abgedruckt. Die Dailies, die ebenfalls in diesem Band zu sehen sind, pr\u00e4sentieren wir nat\u00fcrlich auch (wegen der Bildgr\u00f6sse) im Querformat. Am 15. M\u00e4rz 1931 erschien in einigen amerikanischen Zeitungen die erste farbige Comicseite von Tarzan. Diese und die folgenden 27 Seiten zeichnete Rex Maxon. Ab dem 27. September 1931 \u00fcbernahm der sp\u00e4ter durch Prinz Eisenherz weltber\u00fchmt gewordene Hal Foster die Serie. Er brachte 293 Seiten in den folgenden Jahren f\u00fcr diese Serie zu Papier. Mitte 1937 wurde der f\u00fcr seinen dynamischen Zeichenstil legend\u00e4re Burne Hogarth sein Nachfolger. Abgesehen von einer l\u00e4ngeren Pause - Mitte der 1940er Jahre, in der Ruben Moreira zeichnete - f\u00fchrte Hogarth die Abenteuergeschichten bis 1950 fort. In zehn B\u00e4nden ver\u00f6ffentlicht Bocola erstmals die restaurierten Tarzan Sonntagsseiten in den Originalfarben. In dem grossen Hardcoverformat (26,3 x 35,4 cm) kommen die detailreichen Zeichnungen besonders gut zur Geltung. Jedes Buch enth\u00e4lt etwa zwei Jahrg\u00e4nge aus dem Zeitraum 1931 bis 1950. Der Abschlussband, Band 10, enth\u00e4lt zus\u00e4tzlich alle Dailies, an deren Produktion Burne Hogarth zwischen 1947 und 1950 beteiligt war..","merchants_number":1,"ean":9783939625704,"category_id":103,"size":null,"min_price":51.89999999999999857891452847979962825775146484375,"low_price_merchant_id":70254503,"ID":5533217,"merchants":["orell-fuessli"],"brand":"undefined","slug":"tarzan-sonntagsseiten-1949-1950","url":"\/unterhaltung\/produkt\/tarzan-sonntagsseiten-1949-1950\/","low_price_merchant_name":"Orell F\u00fcssli"}



CHF 153.00
Composite, Hybrid, and Multifunctional Materials, Volume 4
Characterizing the Mechanical Response of a Biocomposite Using the Grid Method.- Preliminary Study on the Production of Open Cells Aluminum Foam by Using Organic Sugar as Space Holders.- Characterization of Shear Horizontal-Piezoelectric Wafer Active Sensor (SH-PWAS).- Elastic Properties of CYCOM 5320-1/T650 at Elevated Temperatures Using Response Surface Methodology.- Coupon-based Qu... zur Produkt-Seite
4878647 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvNTkvYzIvZTAvNDU4NjUwMzMwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvNTkvYzIvZTAvNDU4NjUwMzMwMDAwMUFfNjAweDYwMC5qcGc=","post_title":"Composite, Hybrid, and Multifunctional Materials, Volume 4","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9783319069913&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Ftechnik%2F441238%2Fcomposite-hybrid-and-multifunctional-materials-volume-4-proceedings-of-the-2014-annual-conferenc%3FsPartner%3Dtoppreise","labels":[],"brand_id":1,"post_content":"Characterizing the Mechanical Response of a Biocomposite Using the Grid Method.- Preliminary Study on the Production of Open Cells Aluminum Foam by Using Organic Sugar as Space Holders.- Characterization of Shear Horizontal-Piezoelectric Wafer Active Sensor (SH-PWAS).- Elastic Properties of CYCOM 5320-1\/T650 at Elevated Temperatures Using Response Surface Methodology.- Coupon-based Qualification of Bonded Composite Repairs for Pressure Equipment.- Compression-After-Impact of Sandwich Composite Structures: Experiments and Simulation.- Compact Fracture Specimen for Characterization of Dental Composites.- Mechanics of Compliant Multifunctional Robotic Structures.- In-Situ SEM Deformation Behavior Observation at CFRP Fiber-Matrix Interface.- High Strain Gradient Measurements in Notched Laminated Composite Panels by Digital Image Correlation.- Intermittent Deformation Behavior in Epitaxial Ni-Mn-Ga Films.- Experimental Analysis of Repaired Zones in Composite Structures Using Digital Image Correlation.- Mechanics of Curved Pin-reinforced Composite Sandwich Structures.- Experimental Investigation of Free-field Implosion of Filament Wound Composite Tubes.- Experimental Investigation of Bend-Twist Coupled Cylindrical Shafts.- Processing and Opto-mechanical Characterization of Transparent Glass-Filled Epoxy Particulate Composites.- Study of Influence of SiC and Al2O3 as Reinforcement Elements in Elastomeric Matrix Composites.- Manufacturing of New Elastomeric Composites: Mechanical Properties Chemical and Physical Analysis.- The Effect of Particles Size on the Thermal Conductivity of Polymer Nanocomposite.- Curing Induced Shrinkage: Measurement and Effect of Micro-\/Nano- Modified Resins on Tensile Strengths.- Graphene Reinforced Silicon Carbide Nanocomposites-processing and Properties.- Experimental Investigation of the Effect of CNT Addition on the Strength of CFRP Curved Composite Beams.- Mechanical and Tribological Performance of Aluminium Matrix Composite Reinforced with Nano Iron Oxide (Fe3O4).- Particle Templated Graphene-based Composites with Tailored Electro-mechanical Properties.- Novel Hybrid Fastening System with Nano-additive Reinforced Adhesive Inserts.","merchants_number":1,"ean":9783319069913,"category_id":103,"size":null,"min_price":153,"low_price_merchant_id":70255345,"ID":4878647,"merchants":["euniverse"],"brand":"undefined","slug":"composite-hybrid-and-multifunctional-materials-volume-4","url":"\/unterhaltung\/produkt\/composite-hybrid-and-multifunctional-materials-volume-4\/","low_price_merchant_name":"eUniverse"}



CHF 101.00
Diagnosis of Cutaneous Lymphoid Infiltrates
Part I: The Basics.- Clinical Pathological Correlation.- Skin Biopsy Evaluation.- Lymphocyte Morphology.- Lymphoid Follicle Morphology and Components.- Reactive Versus Neoplastic Lymphoid Follicles.- Extrafollicular Localization of Germinal Center Cells.- Part II: Histomorphologic Differential Diagnosis (DDx).- DDx of Epidermotropism.- DDx of Ulceration.- DDx of Perifollicular Accentu... zur Produkt-Seite
4475600 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvYmQvZWMvMzAvNzUyMzE1OTQwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvYmQvZWMvMzAvNzUyMzE1OTQwMDAwMUFfNjAweDYwMC5qcGd8fnxodHRwczovL2kud2VsdGJpbGQuZGUvcC9kaWFnbm9zaXMtb2YtY3V0YW5lb3VzLWx5bXBob2lkLWluZmlsdHJhdGVzLTMyNTIzOTU3Ni5qcGc=","post_title":"Diagnosis of Cutaneous Lymphoid Infiltrates","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9783030116521&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Fmedizin-pharmazie%2F389390%2Fdiagnosis-of-cutaneous-lymphoid-infiltrates-a-visual-approach-to-differential-diagnosis-and-knowled%3FsPartner%3Dtoppreise","labels":[],"brand_id":1,"post_content":"Part I: The Basics.- Clinical Pathological Correlation.- Skin Biopsy Evaluation.- Lymphocyte Morphology.- Lymphoid Follicle Morphology and Components.- Reactive Versus Neoplastic Lymphoid Follicles.- Extrafollicular Localization of Germinal Center Cells.- Part II: Histomorphologic Differential Diagnosis (DDx).- DDx of Epidermotropism.- DDx of Ulceration.- DDx of Perifollicular Accentuation.- DDx of Eosinophil-Rich Infiltrate.- DDx of Lymphoid Follicle Formation.- DDx of Angiocentrism.- DDx of Pannicular-based Infiltrate.- DDx of Large Cell Infiltrate.- Part III: Special Techniques.- Basic Immunohistochemistry Panels.- CD8-Positive Cutaneous Infiltrates.- Differential Diagnoses of CD30 Expression.- Differential Diagnoses of CD56.- EBV-positive Cutaneous Infiltrates.- Differential Diagnoses of BCL2-positive follicles.- Part IV: Diagnostic Entities.- Secondary Cutaneous Invovlement by Systemic\/Nodal Lymphomas.- Classic Mycosis Fungoides (MF).- Folliculotropic Mycosis Fungoides (FMF).- Pagetoid Reticulosis.- Granulomatous Slack Skin.- Sezary Syndrome.- Primary Cutaneous CD30+ Lymphoproliferative Disorders, Primary Cutaneous Anaplastic Large Cell Lymphoma.- Primary Cutaneous CD30+ Lymphoproliferative Disorders, Lymphomatoid Papulosis.- Primary Cutaneous CD4+ Small\/Medium-Sized Pleomorphic T-Cell Lymphoproliferate Disorder.- Subcutaneous Panniculitis-like T-cell Lymphoma (alpha-beta).- Cutaneous Gamma-Delta T-cell Lymphoma.- Primary Cutaneous Aggressive Epidermotropic CD8+ T-cell Lymphoma.- Extranodal NK\/T-cell Lymphoma, Nasal Type.- Hydroa Vacciniforme-like T-cell Lymphoproliferative Disorder.- Adult T-cell Leukemia\/Lymphoma (ATLL).- Primary Cutaneous Acral CD8+ T-cell Lymphoma (Indolent DC8+ Lymphoid Proliferation of the Ear).- Primary Cutaneous Peripheral T-cell Lymphoma, Unspecified.- Primary Cutaneous Diffuse Large B-cell Lymphoma, Leg Type.- Primary Cutaneous Diffuse Large B-cell Lymphoma, Other.- Primary Cutaneous Follicle Center Lymphoma.- Primary Cutaneous Marginal Zone B-cell Lymphoma.- Lymphomatoid Granulomatosis (LYG).- Blastic Plasmacytoid Dendritic Cell Neoplasm.- Appendices.","merchants_number":2,"ean":9783030116521,"category_id":103,"size":null,"min_price":101,"low_price_merchant_id":70255345,"ID":4475600,"merchants":["euniverse","weltbild"],"brand":"undefined","slug":"diagnosis-of-cutaneous-lymphoid-infiltrates","url":"\/unterhaltung\/produkt\/diagnosis-of-cutaneous-lymphoid-infiltrates\/","low_price_merchant_name":"eUniverse"}



CHF 59.90
Building the Foundation: Whole Numbers in the Primary Grades
Part I. Introductory section.- Chapter 1. Building a strong foundation concerning whole numbers arithmetic in primary grades: editorial introduction.- Chapter 2. Social and cultural contexts in the teaching and learning of whole numbers arithmetic.- Chapter 3. Language and cultural issues in the teaching and learning of whole number arithmetic.- Chapter 4. Reflecting on number languag... zur Produkt-Seite
4887698 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9pLndlbHRiaWxkLmRlL3AvYnVpbGRpbmctdGhlLWZvdW5kYXRpb24td2hvbGUtbnVtYmVycy1pbi10aGUtcHJpbWFyeS0yNzM1NDc1OTIuanBn!aHR0cHM6Ly9pLndlbHRiaWxkLmRlL3AvYnVpbGRpbmctdGhlLWZvdW5kYXRpb24td2hvbGUtbnVtYmVycy1pbi10aGUtcHJpbWFyeS0yNzM1NDc1OTIuanBnfH58aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvMDIvYTMvMjcvNjQ4NDMxNTUwMDAwMUFfNjAweDYwMC5qcGc=","post_title":"Building the Foundation: Whole Numbers in the Primary Grades","deeplink":"https:\/\/track.adtraction.com\/t\/t?a=1632201226&as=1592767275&t=2&tk=1&url=https:\/\/www.weltbild.ch\/artikel\/x\/_23191188-1","labels":[],"brand_id":1,"post_content":"Part I. Introductory section.- Chapter 1. Building a strong foundation concerning whole numbers arithmetic in primary grades: editorial introduction.- Chapter 2. Social and cultural contexts in the teaching and learning of whole numbers arithmetic.- Chapter 3. Language and cultural issues in the teaching and learning of whole number arithmetic.- Chapter 4. Reflecting on number language: a commentary on Chapter 3.- Part II. Working group chapters and commentaries.- Chapter 5. What and why of whole number arithmetic: foundational ideas from history, language, and societal changes.- Chapter 6. Reflecting on the what and why of whole numbers arithmetic: a commentary on Chapter 5.- Chapter 7. Whole number thinking, learning and development: neuro-cognitive, cognitive and developmental approaches.- Chapter 8. Whole number thinking, learning and development: a commentary on Chapter 7.- Chapter 9. Aspects that affect whole number learning: cultural artefacts and mathematical tasks.- Chapter 10. Artefacts and tasks in the mathematical preparation of teachers of elementary arithmetic from a mathematician's perspective: a commentary on Chapter 9.- Chapter 11. How to teach and assess whole number arithmetic: some international perspectives.- Chapter 12. How to teach and assess whole number arithmetic: a commentary on Chapter 11.- Chapter 13. Connecting whole number arithmetic foundations to other parts of mathematics: structure and structuring activity.- Chapter 14. Structuring structural awareness: a commentary on Chapter 13. Part III.- Panels.- Chapter 15. Panel on tradition in whole number arithmetic.- Chapter 16.- Panel on special needs in research and instruction in whole number arithmetic.- Chapter 17. Panel on professional development models for whole number aritmetic in primary mathematics teacher education: a cross-cultural overview.- Part IV.- Plenary presentations.- Chapter 18. The theory of school arithmetic: whole numbers.- Chapter 19. Quantities, numbers, number names and the real number.- Chapter 20. Low numeracy: from brain to education.- Part V. Appendices.","merchants_number":2,"ean":9783319635545,"category_id":103,"size":null,"min_price":59.89999999999999857891452847979962825775146484375,"low_price_merchant_id":27291482,"ID":4887698,"merchants":["weltbild","euniverse"],"brand":"undefined","slug":"building-the-foundation-whole-numbers-in-the-primary-grades","url":"\/unterhaltung\/produkt\/building-the-foundation-whole-numbers-in-the-primary-grades\/","low_price_merchant_name":"Weltbild"}



CHF 189.00
Next Generation Sequencing in Cancer Research. Vol.2
Single-cell next Generation Sequencing and Its Applications in Cancer Biology.- Utility of Next Generation Sequencing in Cancer Drug Development and Clinical Trials.- Next-Generation Sequencing in the Era of Cancer-Targeted Therapies: Towards the Personalised Medicine.- Mutational Similarities Across Cancers: Implications for Research, Diagnostics and Personalized Therapy Design.- Sta... zur Produkt-Seite
4879376 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvZjMvOTUvNDIvNTExMTk0MzUwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvZjMvOTUvNDIvNTExMTk0MzUwMDAwMUFfNjAweDYwMC5qcGc=","post_title":"Next Generation Sequencing in Cancer Research. Vol.2","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9783319158105&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Fmedizin-pharmazie%2F443084%2Fnext-generation-sequencing-in-cancer-research.-vol.2-from-basepairs-to-bedsides%3FsPartner%3Dtoppreise","labels":[],"brand_id":1,"post_content":"Single-cell next Generation Sequencing and Its Applications in Cancer Biology.- Utility of Next Generation Sequencing in Cancer Drug Development and Clinical Trials.- Next-Generation Sequencing in the Era of Cancer-Targeted Therapies: Towards the Personalised Medicine.- Mutational Similarities Across Cancers: Implications for Research, Diagnostics and Personalized Therapy Design.- Standardized Decision Support in NGS Reports of Somatic Cancer Variants.- Clinical Considerations in the Conduct of Cancer Next Generation Sequencing Testing and Genetic Counselling.- Next Generation Sequencing for Cancer Biomarker Discovery.- Validation and Implementation of Next Generation Sequencing Technologies in a Clinical Molecular Diagnostic Laboratory.- Next Generation Sequencing Technologies and Formalin Fixed Paraffin Embedded Tissue: Application to Clinical Cancer Research.- Applications of NGS to Screen FFPE Tumours for Detecting Fusion Transcripts.- Clinical Application of Next-Generation Sequencing of Formalin-Fixed Paraffin-Embedded Tumors.- ChIP-BS-Sequencing in Cancer Epigenomics.- Integrative Analysis Identifies Transcription Factor-DNA Methylation Relationships and Introduces New Avenues for Translating Cancer Epigenetics Into the Clinic.- Differential Methylation Analysis with Next-Generation Sequencing.- Performance Comparison and Data Analysis Strategies for MicroRNA Profiling in Cancer Research.- Small RNA Sequencing for Squamous Cell Carcinoma Research.- Exome Capture and Capturing Technologies in Cancer Research.- The Landscape of DNA Virus Associations Across Human Malignant Cancers.- Using Next Generation Sequencing to Reveal Patterns of Chromosomal Alterations in Oral Verrucous Carcinoma.- Vironomics: The Study of Viral Genomics in Human Cancer and Disease.- Molecular Typing of Lung Adenocarcinoma on Cytological Samples in the Next Generation Sequencing Era.- Whole Genome\/Exome Sequencing in Acute Leukemia: From Research to Clinics.- Next Generation Sequencing Applications in Head and Neck Oncology.- CIC Mutation in Brain Tumor.- Isocitrate Dehydrogenase (IDH) Mutation in Gliomas.- Utilization of Multigene Panels in Hereditary Cancer Predisposition Testing.","merchants_number":1,"ean":9783319158105,"category_id":103,"size":null,"min_price":189,"low_price_merchant_id":70255345,"ID":4879376,"merchants":["euniverse"],"brand":"undefined","slug":"next-generation-sequencing-in-cancer-research-vol2","url":"\/unterhaltung\/produkt\/next-generation-sequencing-in-cancer-research-vol2\/","low_price_merchant_name":"eUniverse"}



CHF 157.00
Earthquake Engineering and Structural Dynamics in Memory of Ragnar Sigbjörnsson
1. Full-Scale Measurement and Analysis of Wind-Induced Vibrations of a Long-Span Suspension Bridge in Complex Terrain - Aksel et al. 2. Challenges in Modelling the Seismic Response of RC Walls - Isakovic et al. 3. Synergies and Conflicts Between Seismic Design and Design for Other Extreme Actions - M. Fardis 4. Seismic Capacity Reduction Factors for RC Beams and Columns - Mendoza an... zur Produkt-Seite
5024717 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvNGEvZDAvZjgvNjQ4NDczNDMwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvNGEvZDAvZjgvNjQ4NDczNDMwMDAwMUFfNjAweDYwMC5qcGc=","post_title":"Earthquake Engineering and Structural Dynamics in Memory of Ragnar Sigbj\u00f6rnsson","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9783319620985&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Fgeowissenschaften%2F462229%2Fearthquake-engineering-and-structural-dynamics-in-memory-of-ragnar-sigbjoernsson-selected-topics%3FsPartner%3Dtoppreise","labels":[],"brand_id":1,"post_content":"1. Full-Scale Measurement and Analysis of Wind-Induced Vibrations of a Long-Span Suspension Bridge in Complex Terrain - Aksel et al. 2. Challenges in Modelling the Seismic Response of RC Walls - Isakovic et al. 3. Synergies and Conflicts Between Seismic Design and Design for Other Extreme Actions - M. Fardis 4. Seismic Capacity Reduction Factors for RC Beams and Columns - Mendoza and Mariano 5. Inherent Damping in Nonlinear Time-History Analyses: A Recommended Modelling Approach - A.J. Carr 6. Initial Wave Length and Total Energy of Landslide Generated Tsunamis from Translatory Wave Theory - Jonas Eliasson 7. Geneaology of Performance Based Seismic Design: Is the Present a Re-Crafted Version of the Past? - Gulkan and Sozen 8. On Stochastic Dynamic Second-Order Response Analysis of Marine Bridges - Bernt Leira 9. Critical Response of Elastic-Plastic Structures to Near-Fault Ground Motions and Its Application to Base-Isolated Building Structures - Izuru Takewaki 10. A Simplified Approach for Site Specific Design Spectrum - Atilla Ansal 11. Dry \"Mortar Free\" Infill Panels for Sustainable Architecture in High-Seismicity Areas - Marco Vailati 12. Strong-Motion Instrumentation and Monitoring in Iceland - Sigbjornsson 13. The UPStrat-MAFA Project: Developments and Accomplishments on Strategies for Urban Risk Reduction - Muscacchio et al. 14. The MASW Method for Site Response Evaluation and Its Practical Applications - Olafsdottir et al. 15. Strain Velocity Rate and Its Analysis in Iceland Based on GPS Data - Snaebjornsson et al. 16. Seismic Fragility of Low Rise Residential Buildings in South Iceland Based on Damage Data and Corresponding Risk for Typical Earthquake Scenarios - Bessasson et al. 17. Three-Dimensional Characteristics of Ground Motion in the Near-Fault Area - Rupakhety and Sigbjornsson 18. Rotation-Invariant Measures of Earthquake Ground Motion - Rupakhety and Sigbjornsson 19. System Identification of a Typical Residential Building in Kathmandu Using Aftershocks of the 2015 Gorkha Nepal Earthquakes and Triggered Noise - Rupakhety et al. 20. Ground Motion Prediction Model for Iceland Based on Theoretical Source Spectra - Olafsson et al. 21. Source Parameters of the Recent Earthquakes in South Iceland and Their Use in Ground Motion Simulation Models - Olafsson et al.","merchants_number":1,"ean":9783319620985,"category_id":103,"size":null,"min_price":157,"low_price_merchant_id":70255345,"ID":5024717,"merchants":["euniverse"],"brand":"undefined","slug":"earthquake-engineering-and-structural-dynamics-in-memory-of-ragnar-sigbjornsson","url":"\/unterhaltung\/produkt\/earthquake-engineering-and-structural-dynamics-in-memory-of-ragnar-sigbjornsson\/","low_price_merchant_name":"eUniverse"}


CHF 14.20
Persepolis, English edition. Pt.2
'Wildly charming . . . Like a letter from a friend, in this case a wonderful friend: honest, strong-willed, funny, tender, impulsive, and self-aware.' —Luc Sante, The New York Times Book Review 'The most original coming-of-age story from the Middle East yet.' — People 'Elegant, simple panels tell this story of growth, loneliness, and homecoming wi... zur Produkt-Seite
4996340 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTA1NDYzNzczX3diTzhYLXBuZw==!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTA1NDYzNzczX3diTzhYLXBuZ3x+fGh0dHBzOi8vYXNzZXRzLnRoYWxpYS5tZWRpYS9pbWcvYXJ0aWtlbC8wMzBhMjI2OThlZDgyYjc1MTVkOTI2Y2E3MWZkMzBmMjhhYWE4MTY2LTAwLTAwLmpwZWc=","post_title":"Persepolis, English edition. Pt.2","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=31523928771&a=401125&m=11816&pref1=9780375714665","labels":[],"brand_id":1,"post_content":"'Wildly charming . . . Like a letter from a friend, in this case a wonderful friend: honest, strong-willed, funny, tender, impulsive, and self-aware.' —Luc Sante, The New York Times Book Review 'The most original coming-of-age story from the Middle East yet.' — People 'Elegant, simple panels tell this story of growth, loneliness, and homecoming with poignant charm and wit.' — The Washington Post 'Humorous and heartbreaking . . . A welcome look beind the headlines and into the heart and mind of one very wise, wicked, and winning young woman.' — Elle 'Scary, moving, and etched out with a simplicity that speaks volumes. The arist is less a talent than a force.' — The Austin Chronicle 'Irresistible . . . Satrapi's story is too important—and too fascinating—to let go of.' —Fort Worth Star-Telegram 'Powerful . . . A great, engaging tale . . . As deeply satisfying as a good, old-fashioned prose novel and as visually delightful as old picture books from childhood.' —Cleveland Plain Dealer 'Every revolution needs a chronicler like Satrapi.' — San Francisco Chronicle 'It is our good fortune that Satrapi has never stopped visiting Iran in her mind.' — Newsweek 'Persepolis 2 is much more than the chronicle of a young woman’s struggle into adulthood; it’s a brilliant, painful, rendering of the contrast between East and West, between the repression of wartime Iran and the social, political, and sexual freedoms of 1980’s Austria. There’s something universal about Satrapi’s search for self-definition, but her experiences in Vienna and Tehran are rendered with such witty particularity, and such heartbreaking honesty, that by the end of this book you’ll feel you’ve gained an intimate friend.' —Julie Orringer, author of How To Breathe Underwater 'Marjane Satrapi's books are a revelation. They're funny, they're sad, they're hugely readable. Most importantly, they remind you that the media sometimes tell you the facts but rarely tell you the truth. In one afternoon Persepolis will teach you more about Iran, about being an outsider, about being human, than you could learn from a thousand hours of television documentaries and newspaper articles. And you will remember it for a very long time.' —Mark Haddon, author of The Curious Incident of the Dog in the Night-Time","merchants_number":2,"ean":9780375714665,"category_id":103,"size":null,"min_price":14.199999999999999289457264239899814128875732421875,"low_price_merchant_id":1087639,"ID":4996340,"merchants":["dodax","orell-fuessli"],"brand":"undefined","slug":"persepolis-english-edition-pt2","url":"\/unterhaltung\/produkt\/persepolis-english-edition-pt2\/","low_price_merchant_name":null}



CHF 236.00
Nonlinear Dynamics, Volume 1
1 Nonlinear Vibrations of a Beam with a Breathing Edge Crack Using Multiple Trial Functions.- 2 Enforcing Linear Dynamics Through the Addition of Nonlinearity.- 3 Experimental Analysis of a Softening-Hardening Nonlinear Oscillator Using Control-Based Continuation.- 4 Experimental Nonlinear Dynamics of Laminated Quasi-isotropic Thin Composite Plates.- 5 Experimental Identification of a... zur Produkt-Seite
5522567 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9pLndlbHRiaWxkLmRlL3Avbm9ubGluZWFyLWR5bmFtaWNzLXZvbHVtZS0xLTI3NDcwNTg1Mi5qcGc=!aHR0cHM6Ly9pLndlbHRiaWxkLmRlL3Avbm9ubGluZWFyLWR5bmFtaWNzLXZvbHVtZS0xLTI3NDcwNTg1Mi5qcGd8fnxodHRwczovL29zMS5tZWluZWNsb3VkLmlvL2IxMDE1OC9tZWRpYS9pbWFnZS83MC82NC85ZC81NjEzNTA2MTAwMDAxQV82MDB4NjAwLmpwZw==","post_title":"Nonlinear Dynamics, Volume 1","deeplink":"https:\/\/track.adtraction.com\/t\/t?a=1632201226&as=1592767275&t=2&tk=1&url=https:\/\/www.weltbild.ch\/artikel\/x\/_21249770-1","labels":[],"brand_id":1,"post_content":"1 Nonlinear Vibrations of a Beam with a Breathing Edge Crack Using Multiple Trial Functions.- 2 Enforcing Linear Dynamics Through the Addition of Nonlinearity.- 3 Experimental Analysis of a Softening-Hardening Nonlinear Oscillator Using Control-Based Continuation.- 4 Experimental Nonlinear Dynamics of Laminated Quasi-isotropic Thin Composite Plates.- 5 Experimental Identification of a Structure with Internal Resonance.- 6 Shock Response of an Antenna Structure Considering Geometric Nonlinearity.- 7 Investigation on Friction-excited Vibration of Flexibly Supported Shafting System.- 8 Resonant Analysis of Systems Equipped with Nonlinear Displacement-Dependent (NDD) Dampers.- 9 Performance Comparison Between a Nonlinear Energy Sink and a Linear Tuned Vibration Absorber for Broadband Control.- 10 Numerical Assessment of a Tunable Auxiliary Mass Damper Using a Friction Damper.- 11 Experimental and Numerical Investigation of the Nonlinear Bending-Torsion Coupling of a Clamped-Clamped Beam with Centre Masses.- 12 Tracking of Backbone Curves of Nonlinear Systems Using Phase-Locked-Loops.- 13 The Importance of Phase-Locking in Nonlinear Modal Interactions.- 14 A Study of the Modal Interaction Between Three Nonlinear Normal Modes Using a Backbone Curve Approach.- 15 Investigating Nonlinear Modal Energy Transfer in a Random Load Environment.- 16 Nonlinear Modal Testing Performed by Pulsed-air Jet Excitation System.- 17 EMA-FEA Correlation and Updating for Nonlinear Behaviour of an Automotive Heat-shield.- 18 Tutorial on Nonlinear System Identification.- 19 Higher-Order Frequency Response Functions for Hysteretic Systems.- 20 Model Upgrading T0 Augment Linear Model Capabilities Into Nonlinear Regions.- 21 Obtaining Nonlinear Frequency Responses from Broadband Testing.- 22 Experimental Study of Isolated Response Curves in a Two-degree-of-freedom Nonlinear System.- 23 Nonlinear Response of a Thin Panel in a Multi-Discipline Environment: Part I - Experimental Results.- 24 Nonlinear Dynamic Response Prediction of a Thin Panel in a Multi-Discipline Environment: Part II - Numerical Predictions.- 25 Stability Analysis of Curved Panels.- 26 Optimal Representation of a Varying Temperature Field for Coupling with a Structural Reduced Order Model.- 27 Basis Identification for Nonlinear Dynamical Systems Using Sparse Coding.- 28 Interaction Between Aerothermally Compliant Structures and Boundary Layer Transition.- 29 Simultaneous Vibration Isolation and Energy Harvesting: Simulation and Experiment.- 30 Nonlinear Dynamic Interaction In A Coupled Electro-Magneto-Mechanical System: Experimental Study.- 31 Hysteresis Identification Using Nonlinear State-Space Models.- 32 Nonholonomically Constrained Dynamics of Rolling Isolation Systems.- 33 Parameter Estimation on Nonlinear Systems Using Orthogonal and Algebraic Techniques.- 34 Online State and Parameter Estimation of a Nonlinear Gear Transmission System.- 35 Model Updating of a Nonlinear System: Gun Barrel of a Battle Tank.- 36 Experimental Passive Flutter Mitigation Using a Linear Tuned Vibration Absorber.- 37 Adaptive Harmonic Balance Analysis of Dry Friction Damped Systems.- 38 Dynamics of an MDOF Rotor Stator Contact System.","merchants_number":2,"ean":9783319297385,"category_id":103,"size":null,"min_price":236,"low_price_merchant_id":27291482,"ID":5522567,"merchants":["weltbild","euniverse"],"brand":"undefined","slug":"nonlinear-dynamics-volume-1-2","url":"\/unterhaltung\/produkt\/nonlinear-dynamics-volume-1-2\/","low_price_merchant_name":"Weltbild"}


CHF 113.10
Residual Stress and Its Effects on Fatigue and Fracture
Organizers, Preface of ECF16 Chairman, Preface of Symposium Chairman, Session: Residual stress analysis by modelling techniques - I: Residual Stress Numerical Simulation of Two Dissimilar Metal Weld Junctions, by Philippe Gilles, Ludovic Nouet, Josette Devaux and Pascal Duranton, Finite Element Simulation of Single-pass and Multi-pass Welding in Pipes: a Sensitivity Analysis, by D.E. ... zur Produkt-Seite
4019018 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTIwNDgyMzExX2dLNmFNbi1wbmc=!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTIwNDgyMzExX2dLNmFNbi1wbmd8fnxodHRwczovL29zMS5tZWluZWNsb3VkLmlvL2IxMDE1OC9tZWRpYS9pbWFnZS81My84Yi8xNi8yMjY1ODY2MDAwMDAxQV82MDB4NjAwLmpwZw==","post_title":"Residual Stress and Its Effects on Fatigue and Fracture","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=22937050613&a=401125&m=11816&pref1=9781402053283","labels":[],"brand_id":1,"post_content":"Organizers, Preface of ECF16 Chairman, Preface of Symposium Chairman, Session: Residual stress analysis by modelling techniques - I: Residual Stress Numerical Simulation of Two Dissimilar Metal Weld Junctions, by Philippe Gilles, Ludovic Nouet, Josette Devaux and Pascal Duranton, Finite Element Simulation of Single-pass and Multi-pass Welding in Pipes: a Sensitivity Analysis, by D.E. Katsareas, C. Ohms, A.G. Youtsos, Residual Stress Prediction in Letterbox-type Repair Welds, by L.K. Keppas, N.K. Anifantis, A.G. Youtsos, D.E. Katsareas, Viscosity Effect on Displacements and Stresses of a Two-Pass Welding Plate, by Walid El Ahmar, Jean-Fran\u00e7ois Jullien, Session: Residual stress analysis by experimental methods: Evaluation of novel post weld heat treatment in ferritic steel repair welds based on neutron diffraction, by C. Ohms, D. Neov, R.C. Wimpory, A.G. Youtsos, High-resolution neutron diffraction for residual strain\/stress investigations, by P. Mikula and M. Vr\u00e1na, Effects of the cryogenic wire brushing on the surfaces integrity and the fatigue life improvements of the AISI 304 Stainless Steel ground components, by Nabil ben Fredj, Abdelkahader Djemaiel, Amir ben Rhouma, Habib Sidhom and Chedly Braham, Surface Integrity in High Speed Machining of Ti - 6 wt. % Al - 4 wt. %V Alloy, by J.D. Puerta Vel\u00e1squez, B. Bolle, P. Chevrier, A. Tidu, The New HFR-Petten SANS Facility Based on a Cold Neutron Source, by O. Uca, C. Ohms, D. Neov, A.G. Youtsos, Session: Residual stress analysis by modelling techniques II: Sensitivity of Predicted Residual Stresses To Modelling Assumptions, by S K Bate, R Charles, D Everett, D O'Gara, A Warren and S Yellowlees, Welding Effects on Thin Stiffened Panels, by T.T. Chau, Evaluation of Residual Stresses in Ceramic and Polymer Matrix Composites Using Finite Element Method, by K. Babski, T. Boguszewski, A. Boczkowska, M. Lewandowska, W. Swieszkowski, K.J. Kurzydlowski, Phase Transformation and DamageElastoplastic Multiphase Model for Welding Simulation, by T. Wu, M. Coret, A. Combescure, Session: Residual stress effects on fatigue and fracture, Identification of Residual Stress Length Scales in Welds for Fracture Assessment, by P. J. Bouchard, P. J. Withers, Interaction of Residual Stress with Mechanical Loading in a Ferritic Steel, by A. Mirzaee-Sisan, M. C. Smith, C. E. Truman, and D.J. Smith, Effects of Residual Stresses on Crack Growth in Aluminum Alloys, by B. Kumar and J.E. Locke, Effect of Reflection Shot peening and Fine Grain Size on Improvement of Fatigue Strength for Metal Bellows, by H. Okada, A. Tange, K. Ando, Surface Crack Development in Transformation Induced Fatigue of SMA Actuators, by Dimitris C. Lagoudas, Olivier W. Bertacchini, Etienne Patoor, Assessment of Defects under Combined Primary and Residual Stresses, by A.H. Sherry, J Quinta da Fonseca, K Taylor and M.R. Goldthorpe, Author Index.","merchants_number":2,"ean":9781402053283,"category_id":103,"size":null,"min_price":113.099999999999994315658113919198513031005859375,"low_price_merchant_id":1087639,"ID":4019018,"merchants":["dodax","euniverse"],"brand":"undefined","slug":"residual-stress-and-its-effects-on-fatigue-and-fracture","url":"\/unterhaltung\/produkt\/residual-stress-and-its-effects-on-fatigue-and-fracture\/","low_price_merchant_name":null}


CHF 114.00
Handbook of Multivariate Experimental Psychology
I Multivariate Method and Theory Construction.- 1 Psychological Theory and Scientific Method.- 1. The Role of Methodology in Science.- 2. Design of This Book.- 3. Some Major Historical Springs of Methodological Tradition.- 4. What Is and What Might Be in Present-Day Research Method Concepts.- 5. The Nature of the Inductive-Hypothetico-Deductive (IHD) Method in Science.- 6. Summary.- R... zur Produkt-Seite
5051045 {"price-changing":0.0578512396694214892090002422264660708606243133544921875,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTIyMjY1MjQ3X25iM2QxVy1wbmc=!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTIyMjY1MjQ3X25iM2QxVy1wbmd8fnxodHRwczovL29zMS5tZWluZWNsb3VkLmlvL2IxMDE1OC9tZWRpYS9pbWFnZS8xZS9jNi8zZS80NTk1NzIwMjAwMDAxQV82MDB4NjAwLmpwZw==","post_title":"Handbook of Multivariate Experimental Psychology","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=24465055403&a=401125&m=11816&pref1=9781461282327","labels":[],"brand_id":1,"post_content":"I Multivariate Method and Theory Construction.- 1 Psychological Theory and Scientific Method.- 1. The Role of Methodology in Science.- 2. Design of This Book.- 3. Some Major Historical Springs of Methodological Tradition.- 4. What Is and What Might Be in Present-Day Research Method Concepts.- 5. The Nature of the Inductive-Hypothetico-Deductive (IHD) Method in Science.- 6. Summary.- References.- 2 The Principles of Experimental Design and Analysis in Relation to Theory Building.- 1. The Six Basic Parameters of Experimental Design.- 2. The Logically Possible and Practically Viable Types of Experimental Design.- 3. The Main Methods of Mathematico-Statistical Treatment.- 4. Definition of Theory, Law, Postulate, Hypothesis, and Reversibility-Irreversibility.- 5. Social and Psychological Influences in the Natural History of Scientific Theory.- 6. The Total Plan: Advantages and Disadvantages Guiding the Choice among Various Research Procedures.- 7. Creative Scientific Thinking in Relation to Multivariate and Bivariate Procedures.- 8. Summary.- References.- 3 The Data Box: Its Ordering of Total Resources in Terms of Possible Relational Systems.- 1. Relational System, Hypothesis, Design, and Method as the Four Panels of the Investigatory Plan.- 2. The Purpose of Developing the Covariation Chart into the BDRM or Data Box.- 3. Two Protoconstructs: Pattern Entity (Vector) and Attribute Scale (Scalar).- 4. The Ten Coordinates of the Hyperspace BDRM.- 5. The Nature and Definition of a BDRM Facet.- 6. Principles Governing \"Entries\": Aspects and Shifts.- 7. The Numbers and Varieties of Facets, and Associated Techniques.- 8. The Numbers and Varieties of Faces, Frames, and Grids.- 9. The Totality of Possible Direct and Derived Relational Analyses and Techniques.- 10. Sources of Variance and Covariance in the Data Box: Observable and Inherent (Ideal, Conceptual) Sources Contrasted.- 11. Scales and Standardizations: Normative, Ipsative, Abative.- 12. Superordinate Relational and Interactional Analysis Techniques: Including Superset and Interset Factor Analysis.- 13. Summary, Glossary, and Notation.- References.- 4 The Meaning and Strategic Use of Factor Analysis.- 1. Its Role and Relationships among Statistical Methods.- 2. The Basic Mathematical Propositions and Formulations.- 3. Alternative Models: Components and Factors.- 4. Properties and Formulas for the Full Factor Model.- 5. Unique Resolution and the Tests of Its Attainment.- 6. Factor Invariance, Identification, and Interpretation.- 7. Deciding the Number of Factors.- 8. The Reticular and Strata Models for Higher-Order Factors.- 9. Some Modifications, Developments, and Conditions of the Main Factor Model.- 10. Strategies in the Practical Use of Factor Analysis.- 11. Questions of Statistical Significance and Use of Computer Procedures.- 12. Summary (and Rationale of Notation).- References.- II Multivariate Modeling and Data Analysis.- 5 Analysis of Covariance Structures.- 1. Introduction.- 2. Some Types of Covariance Structures.- 3. General Approaches to Analysis of Covariance Structures.- 4. Analysis of the Examples.- 5. Generalizations.- References.- 6 Exploratory Factor Analysis.- 1. Introduction.- 2. Decision Points in Factoring.- 3. Implications: Some Designs for Exploratory Factor Analysis.- References.- 7 Confirmatory Factor Analysis.- 1. Philosophical Contrasts between Exploratory and Confirmatory Factor Analysis.- 2. The Fundamentals of Confirmatory Factor Analysis.- 3. Applications for Confirmatory Factor Analysis.- 4. Conclusion.- References.- 8 Multimode Factor Analysis.- 1. Multimode Experimental Design.- 2. Factor-Analytic Developments.- 3. Application: Spectrum of Affect.- 4. Comparisons and Contemplations.- References.- 9 Causal Modeling via Structural Equation Systems.- 1. Introduction.- 2. Structural Equations.- 3. Path Diagrams.- 4. Representation Systems.- 5. Estimation Systems.- 6. Examples.- 7. Future Directions.- References.- 10 Multivariate Analysis of Discrete","merchants_number":2,"ean":9781461282327,"category_id":103,"size":null,"min_price":114,"low_price_merchant_id":1087639,"ID":5051045,"merchants":["dodax","euniverse"],"brand":"undefined","slug":"handbook-of-multivariate-experimental-psychology","url":"\/unterhaltung\/produkt\/handbook-of-multivariate-experimental-psychology\/","low_price_merchant_name":null}



CHF 259.00
Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry, Volume 8
1 Practical Techniques for Scaling of Optically Measured Operating Deflection Shapes.- 2 Prediction of the Coupled Impedance from Frequency Response Data.- 3 Real-Time State Detection in Highly Dynamic Systems.- 4 Stereo-DIC Measurements of Thermal Gradient Effects on the Vibratory Response of Metals.- 5 Modal Testing of a Nose Cone Using Three-Dimensional Scanning Laser Doppler Vibro... zur Produkt-Seite
5522561 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvMDQvZWUvMTgvNTYzMzY1MDEwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvMDQvZWUvMTgvNTYzMzY1MDEwMDAwMUFfNjAweDYwMC5qcGc=","post_title":"Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry, Volume 8","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9783319300832&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Ftechnik%2F446259%2Frotating-machinery-hybrid-test-methods-vibro-acoustics-laser-vibrometry-volume-8-proceedings-o%3FsPartner%3Dtoppreise","labels":[],"brand_id":1,"post_content":"1 Practical Techniques for Scaling of Optically Measured Operating Deflection Shapes.- 2 Prediction of the Coupled Impedance from Frequency Response Data.- 3 Real-Time State Detection in Highly Dynamic Systems.- 4 Stereo-DIC Measurements of Thermal Gradient Effects on the Vibratory Response of Metals.- 5 Modal Testing of a Nose Cone Using Three-Dimensional Scanning Laser Doppler Vibrometry.- 6 A Mathematical Model for Determining the Pose of a SLDV.- 7 Operational Modal Analysis with a 3D Laser Vibrometer Without External Reference.- 8 Scanning LDV Measurement Technology For Vibration Fatigue Testing.- 9 Optically Detecting Wavefronts and Wave Speeds in Water Using Refracto-Vibrometry.- 10 Stochastic Wavenumber Estimation: Damage Detection Through Simulated Guided Lamb Waves.- 11 Use Of Continuous Scanning LDV For Diagnostic.- 12 A Cost Effective DIC System for Measuring Structural Vibrations.- 13 Teaching DSP and Dynamic Measurements at the Graduate Level at Michigan Technological University.- 14 Flipping The Classroom For a Class On Experimental Vibration Analysis.- 15 Lessons Learned From Operational Modal Analysis Courses at the University of Molise.- 16 Authentic Engineering Assignments for an Undergraduate Vibration Laboratory Class.- 17 Vibration and Acoustic Analysis of Acoustic Guitar in Consideration of Transient Sound.- 18 Demarcation for the Coupling Strength in the MODENA Approach.- 19 Vibro-Acoustic Modal Model of a Traction Motor for Railway Applications.- 20 Operational Deflection Shapes of a PWM-fed Traction Motor.- 21 Acoustic Fatigue and Dynamic Behavior of Composite Panels Under Acoustic Excitation.- 22 Evaluation of Microphone Density for Finite Element Source Inversion Simulation of a Laboratory Acoustic Test.- 23 Experimental Mapping of the Acoustic Field Generated by Ultrasonic Transducers.- 24 Enhanced Spin-Down Diagnostics for Nondestructive Evaluation of High-Value Systems.- 25 Performing Direct-Field Acoustic Test Environments on a Sandia Flight System to Provide Data for Finite Element Simulation.- 26 Smooth Complex Orthogonal Decomposition Applied to Traveling Waves in Elastic Media.- 27 Subspace Algorithms in Modal Parameter Estimation for Operational Modal Analysis: Perspectives and Practices.- 28 An Application of Multivariate Empirical Mode Decomposition Towards Structural Modal Identification.- 29 Dynamic Characterization of Milling Plant Columns.- 30 Mixed Force and Displacement Control for Base-Isolation Bearings in RTHS.- 31 Leveraging Hybrid Simulation for Vibration-Based Damage Detection Studies.- 32 Real Time Hybrid Simulation with Online Model Updating on Highly Nonlinear Device.- 33 Discrete-time Compensation Technique for Real-Time Hybrid Simulation.- 34 Evaluating the Effectiveness of a Lodengraf Damping Approach for String Trimmers.- 35 Using Operating Data to Locate & Quantify Unbalance in Rotating Machinery.- 36 Gear Dynamics Characterization by Using Order-Based Modal Analysis.- 37 A Design Framework to Improve the Dynamic Characteristics of Double Planet Planetary Gearsets.- 38 Dynamics and Pareto Optimization of a Generic Synchronizer Mechanism.- 39 Modeling and Characterization of a Flexible Rotor Supported by AMB.- 40 Nonlinear Reduced Order Modeling of a Curved Axi-symmetric Perforated Plate: Comparison with Experiments.- 41 Reduced Order Models for Systems with Disparate Spatial and Temporal Scales.- 42 Using NNMs to Evaluate Reduced Order Models of Curved Beam.- 43 Simulation of Rotor Damping Assembled by Disc Shrink Fits.- 44 Developments in the Prediction of Full Field Dynamics in the Nonlinear Forced Response of Reduced Order System Models.- 45 On the Behaviour of Structures with Many Nonlinear Elements.- 46 Estimation of Instantaneous Speed for Rotating Systems: New Processing Techniques.- 47 Identification of Breathing Cracked Shaft Models from Measurements.","merchants_number":1,"ean":9783319300832,"category_id":103,"size":null,"min_price":259,"low_price_merchant_id":70255345,"ID":5522561,"merchants":["euniverse"],"brand":"undefined","slug":"rotating-machinery-hybrid-test-methods-vibro-acoustics-laser-vibrometry-volume-8","url":"\/unterhaltung\/produkt\/rotating-machinery-hybrid-test-methods-vibro-acoustics-laser-vibrometry-volume-8\/","low_price_merchant_name":"eUniverse"}



CHF 157.00
Project Management and Engineering
Preface.- Acknowledgments.- I. PROJECT MANAGEMENT.- An international analysis of project delivery systems for public works projects, by De Sande I, Jiménez-del-Barco A, Martínez G, Moreno B, Alegre F.J.- Exploring the Relations between Project Duration and Activity Duration, by Acebes F, Pajares J, Galán JM, López-Paredes A.- Adoption of Project Management practices and performance. N... zur Produkt-Seite
4877180 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvMGYvZjcvNWMvNDg2MTUzMjIwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvMGYvZjcvNWMvNDg2MTUzMjIwMDAwMUFfNjAweDYwMC5qcGc=","post_title":"Project Management and Engineering","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9783319127538&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Ftechnik%2F442403%2Fproject-management-and-engineering-selected-papers-from-the-17th-international-aeipro-congress-held%3FsPartner%3Dtoppreise","labels":[],"brand_id":1,"post_content":"Preface.- Acknowledgments.- I. PROJECT MANAGEMENT.- An international analysis of project delivery systems for public works projects, by De Sande I, Jim\u00e9nez-del-Barco A, Mart\u00ednez G, Moreno B, Alegre F.J.- Exploring the Relations between Project Duration and Activity Duration, by Acebes F, Pajares J, Gal\u00e1n JM, L\u00f3pez-Paredes A.- Adoption of Project Management practices and performance. Non Govern-mental Organisations of Navarre - Spain, by Montes-Guerra M, De-Miguel A.R, Gimena F.N, P\u00e9rez-Ezcurdia A, D\u00edez-Silva H.M.- Quick planning using \"S\" curves and cost based durations, by Valderrama F, Guadalupe R.- Engineering projects assessment using Earned Value Management with performance indexes evaluation and statistical methods, by Rubio J, Mu\u00f1oz J.I, Otegi J.R.- Tool based on AHP and its application in the RURENER Local Actions Plan Evaluation, by Paneque A, Aragon\u00e9s P, Mart\u00ednez-Almela J.- II. CIVIL ENGINEERING, URBAN PLANNING, BUILDING AND ARCHITECTURE .- Comparative analysis of calculation of buildings drainage systems, by Arru\u00e9 R, Romero A.M, C\u00e1rcel A.C.- Innovative modular building manufactured using structural black poplar plywood panels, by Al\u00eda-Mart\u00ednez J, Fern\u00e1ndez-Ceniceros J, Anto\u00f1anzas J, Fraile-Garc\u00eda E, Urraca-Valle R.- III. ENVIRONMENTAL ENGINEERING AND NATURAL RESOURCE MANAGEMENT.- Multicriteria decision making methodologies applied to the selection of best available techniques in the ceramic industry: equalitarian vs. prioritised weighting, by Ib\u00e1\u00f1ez-For\u00e9s V, Aragon\u00e9s P, Bovea MD.- LABWASTE.12: Calculation tool for the design of solid waste landfills with inert waste recovery, by Esteban J, Colomer F, Carlos M, Gallardo A.- Synergy as strategy for the energetic valorisation of waste focused in transport, by \u00c1lvarez J.V, Lui\u00f1a R, Ortega F, Lobo P.- Design of an SRF from refuse from a municipal waste treatment plant, by Gallardo A, G\u00f3mez A.M, Colomer F.J, Edo N, Pascual P.- Local analysis of the characteristics and frequency of extreme droughts in M\u00e1laga using the SPI (Standardized Precipitation Index), by Ayuso J.L, Ayuso-Ruiz P, Garc\u00eda A, Est\u00e9vez J, Taguas E.V.- IV. ENERGY EFFICIENCY AND RENEWABLE ENERGY.- Decision Support System software integrating Geographic Information Systems and Soft Computing to solve optimal location problems of renewable energy plants, by S\u00e1nchez Lozano J.M, Jim\u00e9nez-P\u00e9rez J.A, Garc\u00eda-Cascales S, Lamata M.T.- Downscaling of solar irradiation from satellite estimates, by Antonanzas-Torres F, Antonanzas J, Mart\u00ednez-de-Pis\u00f3n F. J, Al\u00eda-Mart\u00ednez M, Perpi\u00f1\u00e1n-Lamigueiro O.- Self energy production by a floating photovoltaic system covers for irrigation reservoirs, by Red\u00f3n-Santaf\u00e9 M, Ferrer-Gisbert C.M, Ferr\u00e1n-Gonz\u00e1lez J, Torregrosa-Soler J.B, S\u00e1nchez-Romero F.J, Ferrer-Gisbert P.S, Pons-Puig E.- V. RURAL DEVELOPMENT AND DEVELOPMENT COOPERATION PROJECTS.- Leadership development in rural development projects: a case study in an Aymara women organization in Puno (Peru), by Sastre S.- VI. PRODUCTION PROCESS ENGINEERING.- On-line Soft Sensor based on Regression Models and Feature Selection Techniques for Predicting Rubber Properties in Mixture Processes, by Sudope-Ortega E, Urraca-Valle R, Antonanzas J, Alia-Martinez M, Sanz-Garcia A, Mart\u00ednez de Pis\u00f3n FJ.- VII. PRODUCT ENGINEERING AND INDUSTRIAL DESIGN.- Segregation of a binary granular mixture in a feed shoe of a single punch press using DEM, by Mart\u00ednez-Mart\u00ednez L, Sainz-Garc\u00eda E, Muro-Hern\u00e1ndez J, Alba-El\u00edas F, Gonz\u00e1lez-Marcos A.- VIII. IT AND COMMUNICATIONS. SOFTWARE ENGINEERING.- Use of Wireless Sensor Network to control landslides interacting with infra-structures, by Combarros Hernandez G, Garcia-Garijo A, Antonanzas-Torres F, Alonso-Garcia E, Fernandez-Martinez R.- Evaluation of clustering configurations for object retrieval using SIFT features, Fern\u00e1ndez-Robles L, Castej\u00f3n-Limas M, Alfonso-Ced\u00f3n J, Alegre E.- A novel architecture for recognising symbols in a CAD environment, by Fern\u00e1ndez-Pacheco D.G, Conesa J, Albert F, Cavas-Mart\u00ednez F, Aleixos N.- Symbolic Computation applied to industrial robots through SAGE, by N\u00e1jera S, Elvira C, Garc\u00eda-Verde L.F, Rico-Azagra J.- IX. TRAINING IN PROJECT ENGINEERING.- Critical learning in development projects and international cooperation, by Peris J, Boni A, Pellicer V, Fari\u00f1as S.- Competences in Project Management reachable before getting the engineering degree, by Guerrero D, Palma M, Vegas S, Quevedo V, La Rosa G.","merchants_number":1,"ean":9783319127538,"category_id":103,"size":null,"min_price":157,"low_price_merchant_id":70255345,"ID":4877180,"merchants":["euniverse"],"brand":"undefined","slug":"project-management-and-engineering","url":"\/unterhaltung\/produkt\/project-management-and-engineering\/","low_price_merchant_name":"eUniverse"}


CHF 122.50
Three-Dimensional Nanoarchitectures
1. Building Three dimensional Nanostructured Devices by Self-Assembly by Steve Hu, Jeong-Hyun Cho and David H. GraciasSummary1.1.0 The pressing need for three dimensional patterned nanofabrication1.2.0 Self-assembly using molecular linkages1.2.1 Three dimensional self-assembly using protein linkages1.2.2 Three dimensional self-assembly with DNA linkages1.3.0 Three dimensional self-ass... zur Produkt-Seite
5030498 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTIyMzk1MDUxXzVSTHBYRC1wbmc=!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTIyMzk1MDUxXzVSTHBYRC1wbmd8fnxodHRwczovL29zMS5tZWluZWNsb3VkLmlvL2IxMDE1OC9tZWRpYS9pbWFnZS8wNy8wZi9jNy8yOTQ1OTAwNTAwMDAxQV82MDB4NjAwLmpwZw==","post_title":"Three-Dimensional Nanoarchitectures","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=28276712429&a=401125&m=11816&pref1=9781441998217","labels":[],"brand_id":1,"post_content":"1. Building Three dimensional Nanostructured Devices by Self-Assembly by Steve Hu, Jeong-Hyun Cho and David H. GraciasSummary1.1.0 The pressing need for three dimensional patterned nanofabrication1.2.0 Self-assembly using molecular linkages1.2.1 Three dimensional self-assembly using protein linkages1.2.2 Three dimensional self-assembly with DNA linkages1.3.0 Three dimensional self-assembly using physical forces1.4.0 Three dimensional patterned nanofabrication by curving and bending nanostructures1.4.1 Curving hingeless nanostructures using stress1.4.2 Three dimensional nanofabrication by bending hinged panels to create patterned polyhedral nanoparticles1.5.0 ConclusionsAcknowledgementsReferences 2. Bio-inspired Three-Dimensional Nanoarchitectures by Jian Shi and Xudong Wang2.1 Introduction2.2 Historical Perspective2.3 Bio-inspired Nanophotonics2.3.1 Photonic Crystals2.3.2 Color Mine in Nature2.3.3 Natural Photonic Crystals2.4 Bio-inspired Fabrication of Nanostrctures2.4.1 Biomineralization2.4.2 Biological Fine Structure Duplication2.5 Bio-inspired Functionality2.6 ConclusionReferences3. Building 3D Micro- and Nanostructures through Nanoimprint by Xing Cheng3.1 Introduction to 3D structure fabrication through nanoimprint3.2 Overview of nanoimprint lithography3.2.1 Fundamentals of nanoimprint lithography3.2.2 Materials for nanoimprint lithography]3.3 Building 3D Nanostructures by Nanoimprint3.3.1 Direct patterning of 3D structures in one step3.3.1.1 Replicating 3D polymer structures from 3D templates3.3.1.2 Applications of 3D polymer structures by one-step nanoimprint3.3.2 Building 3D nanostructures by transfer bonding and sequential layer stacking3.3.2.1 Principles of transfer bonding and sequential layer stacking3.3.2.2 3D structures built by transfer bonding and sequential layer stacking3.3.2.3 Defect modes and process yield of transfer bonding and sequential layer stacking3.3.3 Building 3D nanostructures by two consecutive nanoimprints3.4 Summary and future outlookReferences 4. Electrochemical Growth of Nanostructured Materials by Jin-Hee Lim and John B. Wiley4.1 Magnetic Nanomaterials4.2 Semiconductor Nanostructures4.3 Thermoelectric Nanomaterials4.4 Conducting Polymer Nanostructures4.5 Nanotube and Core-Shell Nanostructures4.6 Porous Au Nanowires4.7 Modification of Nanowires4.8 Functionalization of Nanowires4.9 Nanostructure Arrays on Substrates4.10 Patterning of NanowiresAcknowledgment5. Three dimensional micro\/nanomaterials generated by fiber drawing nanomanufacturing by Zeyu Ma, Yan Hong, Shujiang Ding, Minghui Zhang, Maniul Hossain, Ming Su5.1 Introduction5.2 Fiber draw tower5.3 Materials selections5.4 Drawing process5.5 Size design5.6 3D assembling5.7 Metallic nanowires5.8 Semiconductor nanowires5.9 Glass microchannel array5.10 Differential etching of glasses5.11 Glass microspike array5.12 Hybrid glass membranes5.13 Textured structure of encapsulated paraffin wax microfiber5.14 ConclusionsReferences6.0 One-Dimensional Metal Oxide Nanostructures for Photoelectrochemical Hydrogen Generation by Yat Li6.1 Introduction6.1.1 Photoelectrochemical hydrogen generation6.1.2 Challenges in Metal Oxide based PEC hydrogen generation6.1.3 One-Dimensional Nanomaterials for Photoelectrodes6.2 Pristine Metal Oxide Nanowire\/Nanotube-Arrayed Photoelectrodes6.2.1 Nanowire arrayed photoelectrodes6.2.1.1 Hematite ( -Fe2O3)6.2.1.2. Titanium Oxide (TiO2) and Zinc Oxide (ZnO)6.2.1.3. Tungsten Trioxide (WO3)6.2.2 Nanotube arrayed photoelectrodes6.3 Element-Doped Metal Oxide 1D Nanostructures6.3.1 TiO2 nanostructures6.3.2. ZnO nanostructures6.3.3 Hematite ( -Fe2O3) nanostructures6.4 Quantum Dot Sensitizations6.4.1 Background6.4.2 Quantum Dot Sensitized ZnO Nanowires6.4.3 Quantum Dot Co-Sensitized Nanowires6.4.4 Double-sided Quantum Dot Sensitization6.5 Synergistic Effect of Quantum Dot Sensitization and Elemental Doping6.6 Concluding RemarksReferences 7. Helical Nanostructures: Synthesis and Potential Applications by Pu-Xian Gao and Gang Liu7.1 Introduction7.2 Semiconductor nanohelices7.2.1 ZnO nanohelices7.2.1.1 Superlattice-structured ZnO nanohelices7.2.1.2 Superelasticity, nanobuckling and non-linear electronic transport properties of superlattice-structured ZnO nanohelices7.2.1.2.1 Superelasticity of superlattice-structured ZnO nanohelix7.2.1.2.2 Nanobuckling and fracture of superlattice-structured ZnO nanohelix7.2.1.2.3 Non-linear electronic transport of superlattice-structured ZnO nanohelix7.2.1.3 Other ZnO nanohelices7.2.4 InP nanohelices7.2.2 SiO2 nanohelices7.2.3 CdS nanohelices7.2.4 InP nanohelices7.2.5 Ga2O3 nanohelices7.3 Carbon-related nanohelices7.3.1 Helical carbon nanoribbon\/nanocoil7.3.2 Helical carbon nanotube7.3.3 Tungsten-containing carbon (WC) nanospring7.4 Other nanohelices7.4.1 Helical SiC\/SiO2 core-shell nanowires and Si3N4 microcoils7.4.2 MgB2 nanohelices7.4.3 Si spirals7.5 Potential applications7.6 SummaryAcknowledgementReferences 8. Hierarchical 3D Nanostructure Organization for Next Generation Devices by Eric N. Dattoli and Wei Lu8.1 Introduction8.2 Fluidic Flow - Assisted Assembly8.2.1 Drop-Drying8.2.2 Channel-Confined Fluidic Flow8.2.3 Blown Bubble Film Transfer8.3 Nematic Liquid Crystal - Induced Assembly8.4 Langmuir-Blodgett Assembly8.5 Dielectrophoresis - Assembly8.6 Chemical Affinity and Electrostatic Interaction - directedAssembly8.7 Contact Transfer8.7.1 Shear-assisted Contact Printing8.7.2 Stamp Transfer8.8 Directed Growth8.8.1 Horizontal Growth8.8.2 Vertical Growth8.9 Device Applications8.9.1 Thin-Film Transistor8.9.1.1 Performance considerations for NW- or NT- based TFTs8.9.1.2 Transparent Nanowire-based TFTs8.9.1.3 CNT-based TFTs8.9.2 3D, Multilayer Device Structures8.9.3 Sensors8.9.4 Vertical Nanowire Field Effect Transistors (FETs)8.10 ConclusionReferences 9. Strain-induced Self Rolled-up Semiconductor Microtube Resonators: A New Architecture for Photonic Device Applications by Xin Miao, Ik Su Chun, and Xiuling Li9.1 Introductions9.2 Formation Process9.3 Photonic Applications of Rolled-up Semiconductor Tubes9.3.1 Spontaneous emission from quantum well microtubes: intensity enhancement and energy shift9.3.2 Optical resonance modes in rolled-up microtube ring cavity9.3.3 Optically pumped lasing from rolled-up microtube ring cavity 10. Carbon Nanotube Arrays: Synthesis, Properties and Applications by Suman Neupane, Wenzhi Li10.1 Introduction10.2 Carbon Nanotube Synthesis10.2.1 Arc discharge10.2.2 Laser ablation10.2.3 Electrochemical synthesis10.2.4 Diffusion flame synthesis10.2.5 Chemical vapor deposition10.3 Carbon Nanotube Arrays10.3.1 CNTA synthesis using patterned catalyst arrays10.3.1.1 Pulsed laser deposition10.3.1.2 Anodic aluminum oxide (AAO) templates10.3.1.3 Reverse micelle method10.3.1.4 Photolithography10.3.1.5 Electrochemical etching10.3.1.6 Sputtering10.3.1.7 Nanosphere lithography10.3.1.8 Sol-gel method10.3.2 CNTA synthesis by other methods10.3.3 Horizontal arrays of CNTs10.4 Mechanical Properties10.5 Thermal Properties10.6 Electrical properties10.7 Applications of CNTs and CNTAs10.7.1 Hydrogen storage10.7.2 CNTs as Sensors10.7.3 CNTs for battery and supercapacitor applications10.7.4 CNTs for photovoltaic device10.8 ConclusionsReferences 11. Molecular Rotors Observed by Scanning Tunneling Microscopy by Ye-liang Wang, Qi Liu, Hai-gang Zhang, Hai-ming Guo, Hong-jun GaoAbstract11.1 Introduction11.2 Solution-based and surface-mounted molecule machines11.3 Single molecular rotors at surfaces11.3.1 A monomolecular rotor in supramolecular network11.3.2 Gear-like rotation of molecular rotor along the edge of molecular island11.3.3 Thermal-driven rotation on reconstructed-surface template 11.3.4 STM-driven rotation on reconstructed-surface template11.3.5 Molecular rotors with variable rotation radii11.3.6 Rolling motion of a single molecule at surface11.4 Array of molecular motors at surfaces11.5 Outlook11.6 ConclusionAcknowledgementsReferences 12. Nanophotonic Devices Based on ZnO Nanowires by Qing Yang and Zhong Lin Wang12.1 Introduction12.2 Pure optical devices based on ZnO NWs12.2.1 ZnO NW subwavelength waveguides and their applications12.2.2 Optical pumped lasers in ZnO NWs12.2.3 Nonlinear optical devices based on ZnO NWs12.3 Optoelectronic devices based ZnO NWs12.3.1 ZnO NW ultra-sensitive UV and Infrared PDs12.3.2 Dye-sensitized solar cells based on ZnO NWs12.3.3 Single ZnO NW and NW array light emitting diodes12.3.4 Electrically pumped random lasing from ZnO nanorod arrays12.4 Piezo-phototronic devices based on ZnO NWs12.4.1 Optimizing the power output of a ZnO photocell by piezopotential12.4.2 Enhancing Sensitivity of a Single ZnO Micro-\/NW Photodetector by Piezo-phototronic effect12.5 ConclusionsReferences 13. Nanostructured Light Management for Advanced Photovoltaics by Jia Zhu, Zongfu Yu, Sangmoo Jeong, Ching-Mei Hsu, Shanui Fan, Yi CuiAbstract13.1 Introduction13.2 Fabrication of Nanowire and Nanocone Arrays13.2.1 Method13.2.2 Shape Control: Nanowires and Nanocones13.2.3 Diameter and Spacing Control13.2.4 Large Scale Process13.3 Photon Management: Anti-reflection13.3.1 Nanowires13.3.2 Nanocones13.4 Photon Management: Absorption Enhancement13.4.1 Different Mechanisms13.4.2 Nanodome Structures13.5 Solar Cell performance13.6 Fundamental Limit of Light-trapping in Nanophotonics13.7 Summary and OutlookReferences 14. Highly Sensitive and Selective Gas Detection by 3D Metal Oxide Nanoarchitectures by Jiajun Chen, Kai Wang, Baobao Cao, Dr. Weilie Zhou14.1 Introduction14.2 Highly Sensitive Gas Detection by Standalone 3D Nanosensors14.2.1 Metal Oxide Nanowire \/ Nanotube Array Gas Sensors14.2.1.1 Nanowire Arrays14.2.1.2 Nanotube Arrays14.2.2 Gas Sensors Based on Opal and Inverted Opal Nanostructures14.3 Sensor Arrays Based on 3D Nanostructured Gas Sensors14.4 Conclusion RemarksAcknowledgementReferences 15. Quantum Dot Sensitized Three Dimensional Nanostructures for Photovoltaic Applications by Jun Wang, Xukai Xin, Daniel Vennerberg, Zhiqun Lin15.1 Introduction15.2 Quantum dot sensitized solar cells15.2.1 Overview15.2.2 Synthesis of quantum dots and surface functionalization15.2.3 Quantum dot sensitized nanoparticle films15.2.4 Quantum dot sensitized nanowire arrays15.2.5 Quantum dot sensitized nanotube arrays15.2.6 Investigation of charge injection in quantum dot sensitized solar cells15.2.6.1 Generation of excited electrons15.2.6.2 Recombination and transportation of excited electrons15.3 OutlookReferences 16. Three Dimensional Photovoltaic Devices Based on Vertically Aligned Nanowire Array by Kai Wang, Jiajun Chen, Satish Chandra Rai, and Weilie Zhou16.1 Introduction16.2 Photovoltaic devices based on heteroepitaxial-grown nanowire array integrated with the substrate16.3 Photovoltaic devices based on axial nanowire array16.4 Photovoltaic devices based on nanowire array embedded in thin film16.5 Photovoltaic devices based on nanowire array with core-shell structure16.5.1 P-N core-shell homojuntion photovoltaic devices16.5.2 Type II core-shell heterojuntion photovoltaic devices16.5.2.1 Synthesis of ZnO\/ZnSe and ZnO\/ZnS core-shell nanowire array16.5.2.2 Structural and optical properties of ZnO\/ZnSe core-shell nanowire array16.5.2.3 Photoresponse of ZnO\/ZnSe nanowire array16.5.2.4 Morphologies, structure and optical properties of ZnO\/ZnS nanowire array16.5.2.5 Photovoltaic effect of ZnO\/ZnS nanowire array16.6. Summary and perspectivesAcknowledgementsReferences 17. Supercapacitors Based on 3D Nanostructrued Electrodes by Hao Zhang, Gaoping Cao, Yusheng Yang17.1 Supercapacitors17.2 Electrochemical double layer capacitors based on 3D Nanostructrued electrodes17.2.1 Electrodes based on activated carbons and activated carbon fibers: powdered carbons with disordered pore structures17.2.2 Electrodes based on carbon foams, carbon areogels, and other monolithic carbon: monolithic carbon with disordered micropores17.2.3 Electrodes based on template carbons, graphene, carbide-derived carbons, and hierarchical porous carbons: powdered carbons with high mesopore ratios or reasonable PSD17.2.4 Electrodes based on carbon nanotubes: monolithic carbons with developed mesoporous structures17.3 Pseudocapacitors based on 3D Nanostructrued electrodes17.3.1 Nanostructured metal oxide electrode materials17.3.2 Nanostructured conducting polymer electrodes materials17.4 Hybrid capacitors based on 3D Nanostructrued electrodes17.4.1 Nanostructured electrodes based on metal oxides\/carbon composite17.4.2 Nanostructured electrodes based on polymers\/carbon composites17.5 Conclusions and perspectivesReferences 18. Aligned Ni Coated Single Wall Carbon Nanotubes under Magnetic Field for Coolant Applications by Haiping Hong and Mark Horton18.1 Introduction18.2 Experimental18.3 Results and Discussion18.3.1 Thermal Conductivity of Nanofluids Containing Ni-coated Nanotubes18.3.2 Evidence of Magnetic Alignment of Ni-coated Nanotubes18.4 Conclusion18.5 AcknowledgementsReferences","merchants_number":2,"ean":9781441998217,"category_id":103,"size":null,"min_price":122.5,"low_price_merchant_id":1087639,"ID":5030498,"merchants":["dodax","euniverse"],"brand":"undefined","slug":"three-dimensional-nanoarchitectures","url":"\/unterhaltung\/produkt\/three-dimensional-nanoarchitectures\/","low_price_merchant_name":null}



CHF 143.00
Introduction to Materials for Advanced Energy Systems
Preface 1 Materials based solutions to advanced energy systems Abstract1.1 Advanced energy technology and contemporary issues 1.1.1 Challenges and concerns 1.1.2 The role of the advanced materials1.1.3 Solutions for future energy systems 1.2 Fundamentals of energy systems1.2.1 Energy and service1.2.2 Energy process characterization1.2.2.1... zur Produkt-Seite
4749383 {"price-changing":0.090722856306701793460689486892079003155231475830078125,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvODIvMTUvNTcvNzEzOTgxNDUwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvODIvMTUvNTcvNzEzOTgxNDUwMDAwMUFfNjAweDYwMC5qcGd8fnxodHRwczovL2M0LXN0YXRpYy5kb2RheC5jb20vdjIvMTgwLTE4MC0xMjA4MTI0ODRfQXcyTTIyLXBuZw==","post_title":"Introduction to Materials for Advanced Energy Systems","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9783319980010&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Ftechnik%2F477940%2Fintroduction-to-materials-for-advanced-energy-systems%3FsPartner%3Dtoppreise","labels":[],"brand_id":1,"post_content":"Preface 1 Materials based solutions to advanced energy systems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Abstract1.1\u00a0 Advanced energy technology and contemporary issues 1.1.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Challenges and concerns 1.1.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 The role of the advanced materials1.1.3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Solutions for future energy systems 1.2\u00a0 Fundamentals of energy systems1.2.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Energy and service1.2.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Energy process characterization1.2.2.1\u00a0 The laws of thermodynamics 1.2.2.2\u00a0 Macroscopic and microscopic energy systems1.2.2.3\u00a0 Entropy and enthalpy1.2.2.4\u00a0 Chemical kinetics1.2.2.5\u00a0 Energy availability\u00a01.2.3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Energy calculations and accounting1.2.3.1\u00a0 Energy efficiency1.2.3.2\u00a0 Heating values1.2.4\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 General energy devices1.2.4.1\u00a0 Conversion devices1.2.4.2\u00a0 Energy storage1.2.4.3\u00a0 Systems engineering1.2.4.4\u00a0 Electricity1.2.5\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Sustainable energy1.3\u00a0 Materials development for advanced energy systems1.3.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Functional surface technologies1.3.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Materials integration in sustainable energy systems1.3.3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Higher-performance materials1.3.4\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Sustainable manufacturing of materials1.3.5\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Materials and process development acceleration tools\u00a0\u00a0\u00a0 1.4\u00a0 Summary \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises2 Fundamentals of materials used in energy systems\u00a0\u00a0 Abstract2.1 Structures of solids2.1.1 Atomic structures2.1.2 Crystal structures2.1.2.1 Structures for elements2.1.2.2 Structures for compounds2.1.2.3 Solid solutions2.1.3 Crystal diffraction2.1.3.1 Phase difference and Bragg's law2.1.3.2 Scattering2.1.3.3 Reciprocal space2.1.3.4 Wave vector representation2.1.4 Defects in solids2.1.4.1 Point defects2.1.4.2 Line defects2.1.4.2.1 Edge dislocations2.1.4.2.2 Screw dislocations2.1.4.2.3 Burger's vector and burger circuit2.1.4.2.4 Dislocation motion2.1.4.3 Planar defects2.1.4.3.1 Grain boundaries2.1.4.3.2 Twin boundaries2.1.4.4 Three-dimensional defects2.1.5 Diffusion in solids2.1.5.1 Atomic theory 2.1.5.2 Random walk2.1.5.3 Other mass transport mechanisms2.1.5.3.1 Permeability versus diffusion2.1.5.3.2 Convection versus diffusion2.1.5.4 Mathematics of diffusion2.1.5.4.1 Steady state diffusion2.1.5.4.2 Non-steady state diffusion2.1.6 Electronic structure of solids2.1.6.1 Waves and electrons2.1.6.1.2 Representation of waves 2.1.6.1.2 Matter waves 2.1.6.1.3 Superposition \u00a02.1.6.1.4 Electron waves 2.1.6.2 Quantum mechanics 2.1.6.3 Electron energy band representations 2.1.6.4 Real energy band structures 2.1.6.5 Other aspects of electron energy band structure 2.2 Phase equilibria2.2.1 The Gibbs phase rule2.2.1.1 The phase rule on equilibrium among phases2.2.1.2 Applications of the phase rule2.2.1.3 Construction of phase diagrams2.2.1.4 The tie line principle2.2.1.5 The lever rule 2.2.2 Nucleation and growth of phases2.2.2.1 Thermodynamics of phase transformations2.2.2.2 Nucleation2.3 Mechanical properties2.3.1 Elasticity relationships2.3.1.1 Ture versus engineering strain2.3.1.2 Nature of elasticity and Young's Modulus2.3.1.3 Hook's law2.3.1.4 Poisson's ratio2.3.1.5 Normal forces2.3.2 Plasticity observations2.3.3 Role of dislocation in deformation of crystalline materials2.3.4 Deformation of noncrystalline materials 2.3.4.1 Thermal behavior of amorphous solids 2.3.4.2 Time-dependent deformation of amorphous materials 2.3.4.3 Models for network2.3.4.4 Elastomers2.4 Electronic properties of materials2.4.1 Occupation of electronic states 2.4.1.1 Density of states function2.4.1.2 The Fermi-Dirac distribution function 2.4.1.3 Occupancy of electronic states 2.4.2 Position of the Fermi energy 2.4.3 Electronic properties of metals2.4.3.1 Free electron theory for electrical conduction 2.4.3.2 Quantum theory of electronic conduction 2.4.3.3 Superconductivity 2.4.4 Semiconductors 2.4.4.1 Intrinsic semiconductors 2.4.4.2 Extrinsic semiconductors 2.4.4.3 Semiconductor measurements 2.4.5 Electrical behavior of organic materials 2.4.6 Junctions and devices and the nanoscale2.4.6.1 Junctions 2.4.6.1.1 Metal-metal junctions 2.4.6.1.2 Metal-semiconductor junctions 2.4.6.1.3 Semiconductor-semiconductor PN junctions 2.4.6.2 Selected devices 2.4.6.2.1 Passive devices 2.4.6.2.2 Active devices 2.4.6.3 Nanostructures and nanodevices 2.4.6.3.1 Heterojunction nanostructures 2.4.6.3.2 2-D and 3-D nanostructures 2.5 Computational modeling of materials2.5.1 The challenge of complexity2.5.2 Materials design with predictive capability2.5.3 Materials modeling approaches2.6 Advanced experimental techniques for materials characterization2.6.1 Dynamic mechanical spectroscopy2.6.2 Nanoindentation2.6.3 Light microscopy2.6.4 Electron microscopy2.6.5 Atom probe tomography2.6.6 Advanced X-ray characterization2.6.7 Neutron scattering2.7 Integrated materials process control 2.7.1 Process control and its constituents2.7.1.1 Sensing techniques2.7.1.2 Input parameters for combustion control2.7.2 Diagnostic techniques2.3.2.1 Optical diagnostics2.3.2.2 Solid-state sensors2.8 Summary\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises 3 Advanced materials enable energy production from fossil fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0Abstract\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.1 Materials technology status and challenges in fossil energy systems3.1.1 Boilers3.1.2 Steam turbines3.1.3 Gas turbines3.1.4 Gasifiers3.1.5 CO2 capture and storage3.1.6 Perspectives 3.2 Materials for ultra-supercritical applications 3.2.1 High temperature alloys\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.2.2 Advanced refractory materials for slagging gasifiers\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.2.3 Breakthrough materials \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.3 Coatings and protection materials for steam system3.3.1 High temperature and high pressure coatings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.3.2 Oxygen ion selective ceramic membranes for carbon capture\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.4 Materials for deep oil and gas well drilling and construction\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.4.1 High stress and corrosion resistant propping agents\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.4.2 Erosion- and corrosion-resistant coatings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a03.4.3 Wear resistant coatings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.4.4 High strength and corrosion resistant alloys for use in well \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 casings and deep well drill pipe\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.5 Materials for sensing in harsh environments\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 References\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises4\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Materials-based solutions to solar energy system\u00a0\u00a0 Abstract4.1\u00a0 Solar energy technologies4.1.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Photovoltaic technologies4.1.1.1\u00a0 Residential photovoltaic4.1.1.2\u00a0 Utility-scale flat-plate thin film photovoltaic4.1.1.3\u00a0 Utility-scale photovoltaic concentrators4.1.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Solar thermal technologies4.1.2.1\u00a0 Unglazed collectors4.1.2.2\u00a0 Glazed collectors4.1.2.3\u00a0 Parabolic trough4.1.2.4\u00a0 Vacuum tube collectors4.1.2.5\u00a0 Linear Fresnel lens reflectors4.1.2.6 Solar Stirling engine4.2\u00a0 Photovoltaic materials and devices4.2.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Crystalline silicon PV cells4.2.1.1 Mono-crystal silicon PVs4.2.1.2\u00a0 Polycrystalline silicon PVs4.2.1.3 Emitter wrap-through cells4.2.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Thin-film PV cells4.2.2.1 Amorphous Silicon Cells4.2.2.1.1 Amorphous-Si, double or triple junctions4.2.2.1.2 Tandem amorphous-Si and multi-crystalline-Si4.2.2.2 Ultra-thin silicon wafers4.2.2.3 Cadmium telluride and cadmium sulphide4.2.2.4 Copper indium selenide and copper indium gallium selenide4.2.3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Compound semiconductor PV cells4.2.3.1 Space PV cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a04.2.3.2 Light absorbing dyes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.3.3 Organic and polymer PV\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.3.4 Flexible plastic organic transparent cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4 Nanotechnology for PV cell fabrication\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.1 Silicon nanowires\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.2 Carbon nanotubes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.3 Graphene-based solar cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.4 Quantum dots\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.5 Hot carrier solar cell\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.6 Nanoscale surfaces reduce reflection and increase\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 capture of the full spectrum of sunlight4.2.5 Hybrid solar cells4.2.5.1 Hybrid organic-metal PVs 4.2.5.2 Hybrid organic-organic PVs 4.2.6 Inexpensive plastic solar cells or panels that are mounted on \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 curved surfaces4.3 Advanced materials for solar thermal collectors4.3.1 Desirable features of solar thermal collector materials4.3.1.1 Transparent cover4.3.1.2 Insulation4.3.1.3 Evacuated-tube collectors4.3.2 Polymer materials in solar thermal collectors4.3.3 Corrosion resistant materials in contact with molten salts4.4 Reflecting materials for solar cookers4.5 Optical materials for absorbers4.5.1 Metals4.5.2 Selective coatings4.5.2.1 Intrinsic absorption coatings4.5.2.2 Semiconductor-metal tandems4.5.2.3 Multilayer absorbers4.5.2.4 Metal-dielectric composite coatings4.5.2.5 Surface texturing4.5.2.6 Selectively solar-transmitting coating on a blackbody-like absorber4.5.3 Heat pipes4.5.4 Metamaterial solar absorbers4.5.4.1 Metal-dielectric nanocomposites with tailored plasmonic response 4.5.4.2 Light weight broadband nanocomposite perfect absorbers4.3.4.3 Prospects and future trends4.6 Thermal energy storage materials4.6.1 Sensible thermal energy storage4.6.2 Underground thermal energy storage4.6.3 Phase change materials4.6.4 Thermal energy storage via chemical reactions\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises5 Advanced materials enable renewable geothermal energy capture and generation\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Abstract\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 5.1 Geothermal technologies5.1.1 Geothermal resources for geothermal energy development5.1.2 Geothermal electricity5.1.3 Enhanced geothermal systems and other advanced geothermal technologies5.1.4 Direct use of geothermal energy5.2 Hard materials for downhole rock drilling5.3 Advanced cements for geothermal wells5.4 Geothermal heat pumps5.4.1 Pumping materials5.4.2 Pumping technology5.4.3 Heat pump applications5.5 Materials for transmission pipelines and distribution netorks5.6 Materials for heat exchange systems5.6.1 Heat exchange fluids5.6.2 Heat exchanger coatings5.6.3 Polymer heat exchangers5.6.4 Heat convector materials5.6.5 Refrigeration materials for cooling systems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 5.7 Corrosion protection and material selection for geothermal systems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises6 Advanced materials enable renewable wind energy capture and generation\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Abstract\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1 Wind resources\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.1 Wind quality\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.2 Variation of wind speed with elevation\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.3 Air density\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.4 Wind forecasting\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.5 Offshore wind\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.6 Maximum wind turbine efficiency: The Betz ratio6.2 Materials requirements of wind machinery and generating systems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1 Driven components\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1.1 Shafts\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1.2 Bearings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1.3 Couplings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1.4 Gear boxes \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a06.2.1.5 Generators\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.2 Tower\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.2.1 Tower structure\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.2.2 Tower flange\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.2.3 Power electronics\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.3 Rotor \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.3.1 Blade \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a06.2.3.2 Blade extender\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.3.3 Hub\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.3.4 Pitch drive\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4 Nacelle \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.1 Case\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.2 Frame\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.3 Anemometer\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a06.2.4.4 Brakes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.5 Controller\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.6 Convertor\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.7 Cooling system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.8 Sensors\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.9 Yaw drive\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.5 Balance-of-station subsystems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.6 System design challenges6.3 Wind turbine types and structures6.3.1 Horizontal-axis wind turbines6.3.2 Vertical-axis wind turbines6.3.3 Upwind wind turbines and downwind wind turbines6.3.4 Darrieus turbines6.3.5 Savonius turbines6.3.6 Giant Multi-megawatt turbines6.4 General materials used in wind turbines\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.4.1 Cast iron and steel\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.4.2 Composite materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.4.3 Rare earth elements in magnet\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a06.4.4 Copper\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.4.5 Reinforced concrete6.5 Light weight composite materials for wind turbine blades\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.5.1 Reinforcement\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a06.5.2 Matrix\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.6 Smart and stealth wind turbine blade materials6.7 Permanent-magnet generators for wind turbine applications6.8 Future prospects\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises7 Advanced materials for ocean energy and hydropower7.1 Materials requirements for ocean energy technologies7.1.1 Tidal power7.1.2 Ocean current7.1.3 Wave energy7.1.4 Ocean thermal energy7.1.5 Salinity gradient7.2 Advanced materials and devices for ocean energy \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.1 Structure & prime mover\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.2 Foundations & moorings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.3 Power take off\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.4 Control\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.5 Installation \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.6 Connection\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.7 Operations & maintenance7.3 Wave energy converters\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.3.1 Types of WEC7.4 Tidal energy converters\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.4.1. Types of TEC\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.4.2. Further Permutations7.5 Arrays7.6 Challenges faced by the ocean energy\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.1 Predictability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.2 Manufacturability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.3 Installability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.4 Operability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.5 Survivability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.6 Reliability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.7 Affordability7.7 Materials requirements for hydropower system\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0 7.7.1 Retaining structure materials for dams and dikes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.7.2 Structural materials and surface coatings for turbines runners, draft tubes \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 and penstocks\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises8 Biomass for bioenergy8.1 Materials requirements for biomass technologies\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.1.1 Biomass for power and heat\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.1.2 Biogas\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.1.3 Biofuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.1.4 Biorefineries8.2 Corrosion resistant materials for biofuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.2.1 Metal and its alloys\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.2.2 Elastomers8.3 Nanocatalysts for conversion of biomass to biofuel\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.3.1 Nanocatalysts for biomass gasification\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.3.2 Nanocatalysts for biomass liquefaction\u00a0 8.4 Coal-to-liquid fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.4.1 Basic chemistry\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.4.2 CTL technology options8.5 Materials for combustion processes8.6 Materials for capturing CO2 for using as a nutrient to cultivate alga8.7 Materials for water filtration and desalinationReferenceExercises9 Hydrogen and fuel cells9.1 Introduction9.2 Hydrogen generation technology\u00a09.2.1 Steam methane reforming\u00a09.2.2 Electrolysis9.3 Hydrogen conversion and storage technology\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.1 Fuel cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.2 Hydrogen gas turbines\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.3 Compressed hydrogen gas\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.4 Liquid hydrogen storage in tanks\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.5 Physisorption of hydrogen and its storage in solid structures9.4 Materials-based hydrogen storage \u00a09.4.1 Nanoconfined hydrogen storage materials\u00a09.4.2 Complex hydrides\u00a09.4.3 Reversible hydrides\u00a09.4.4 Hydrogen storage in carbonaceous materials \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a09.4.5 Hydrogen storage in zeolites and glass microspheres \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a09.4.6 Hydrogen storage in organic frameworks \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.4.7 Hydrogen Storage in Polymers 9.4.8 Hydrogen storage in formic acid9.5 Fuel cell materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.1 Anode Materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.2 Cathode Materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.3 Electrolytes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.4 Catalysts (Catalysts for the oxygen reduction reaction)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.5 Sputtering Targets\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.6 Current Collectors (Higher-temperature proton conducting materials)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.7 Support Materials (Low-cost materials resistant to hydrogen-assisted \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 cracking and embrittlement)9.6 Applications of fuel cells9.6.1 Alkaline Fuel Cells9.6.2 Proton Exchange Membrane Fuel Cells \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.6.3 Direct Methanol Fuel Cells 9.6.4 Phosphoric Acid Fuel Cells 9.6.5 Molten Carbonate Fuel Cells 9.6.6 Solid Oxide Fuel Cells \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.6.7 Solid oxide fuel cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.6.8 Polymer electrolyte membrane fuel cellsReferenceExercises10 Role of materials to advanced nuclear energy\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Abstract10.1 Fission and fusion technologies10.1.1 Nuclear reactors\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.1.2 Nuclear power fuel resources (fuel cycle)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.1.3 Fusion energy\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.1.3.1 Magnetic fusion energy\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.1.3.2 Inertial fusion energy10.2 Materials selection criteria\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.1 General considerations\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2 General mechanical properties\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2.1 Fabricability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2.2 Dimension stability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2.3 Corrosion resistance\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2.4 Heat transfer properties\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.3 Special considerations\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.3.1 Neutronic properties\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.3.2 Susceptibility to induced radioactivity\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.3.3 Radiation stability10.3 Materials for reactor components\u00a010.3.1 Structure and fuel cladding materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.1 Advanced radiation resistant structural materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.1.1 Ultrahigh strength alloys\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.1.1 Ultrahigh toughness ceramic composites\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.2 Advanced refractory, ceramic, graphitic or coated materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.3 Corrosion and damage resistant materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.4 Pressure vessel steel\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.4.1 Corrosion resistant nickel base alloys\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.4.2 Dimensionally stable zirconium fuel cladding\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.5 Ultra high temperature resistance structural materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.2 Moderators and reflectors\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a010.3.3 Control materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.4 Coolants\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.5 Shielding materials\u00a0\u00a0\u00a0\u00a0 10.4 Nuclear fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a010.4.1 Metallic fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a010.4.2 Ceramic fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0 10.5 Cladding materials^ Zirconium-based cladding 3-14\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.5.2 Iron-based cladding 3-19\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.5.3 Advanced gas-cooled reactor cladding 3-19\u00a0\u00a0\u00a0\u00a0 10.6 Low energy nuclear reactions in condensed matter\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0 10.7 Advanced computational materials performance modeling\u00a0\u00a0\u00a0\u00a0\u00a0 References\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0 Exercises\u00a0\u00a0 11. Emerging materials for energy harvesting11. 1 Introduction11.2 Thermoelectric Materials11.2.1 Characterizations of thermoelectric Materials11.2.2 Structures\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Oxides and SilicidesHalf-Heusler compoundsSkutterudite Materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Clatherate Materials11.2.3 PropertiesThermal ConductivityFermi SurfaceMorphology\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.2.4 Nano-materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.2.5 Applications11.3 Piezoelectric Materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.3.1 Fundamentals of piezoelectricity\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.3.2 Equivalent circuit of a piezoelectric harvester\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.3.4 Advances of piezoelectric materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Ceramics \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Single crystals \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Polymers\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Composites\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.3.5 Energy harvesting piezoelectric devices\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a011.3.6 Applications11.4 Pyroelectric materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.1 The pyroelectric effect\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.2 Types of pyroelectric materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.3 Pyroelectric cycles for energy harvesting\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.4 Pyroelectric harvesting devices\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.5 Applications11.5 Magnetic Induction system \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.5.1 Architecture and Operational Mechanism11.5.2 Magnet-through-coil Induction 11.5.2.1 Geometry 11.5.2.2 Magnetic flux Generated by the Bar Magnet11.5.2.3 Coil Inductance and Resistance 11.5.2.4 Voltage and Power Generation 11.5.3 Magnet-across-coils Induction 11.5.3.1 Geometry 11.5.3.2 Magnetic Field Generated by the Magnets11.5.3.3 Magnetic Field Generated by Coil Current11.5.3.4 Coil Self-Inductance, Mutual Inductance, and Resistance11.5.3.5 Voltage and Power Generation 11.5.4 Magnetic materials 11.5.5 Magnetic devices11.5.6 Applications\u00a0\u00a0\u00a0\u00a0\u00a0 11.6 Mechanoelectric energy harvesting materials\u00a0\u00a0\u00a0\u00a0\u00a0 References\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0 Exercises\u00a0\u00a0 12 Perspectives and future trends\u00a0\u00a0\u00a0\u00a0 12.1 Sustainability 12.1.1 Efficient use of energy-intensive materials 12.1.2 Retention of strategic materials12.1.3 Extraction technologies to recycle strategic materials12.1.4 Green manufacturing and energy production processes12.1.5 Mitigation of negative impacts of energy technology and economic growth\u00a0\u00a0\u00a0 12.2 Metamaterials and nanomaterials for energy systems\u00a0\u00a0 \u00a0\u00a0\u00a0 12.3 Artificial photosynthesis\u00a0\u00a0\u00a0 12.4 Structural power composites\u00a0\u00a0\u00a0 12.5 Future energy storage materials\u00a0\u00a0\u00a0 12.6 Hybrid Alternative Energy Systems12.6.1 Combining alternative energy components 12.6.2 Uses for hybrid energy systems12.6.3 Solar and wind power combinations12.6.4 Pumped-storage and wind generated hydroelectricity12.6.5 Harvesting zero-point energy from the vacuum12.6.6 Combined energy harvesting techniques\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises","merchants_number":2,"ean":9783319980010,"category_id":103,"size":null,"min_price":143,"low_price_merchant_id":70255345,"ID":4749383,"merchants":["euniverse","dodax"],"brand":"undefined","slug":"introduction-to-materials-for-advanced-energy-systems","url":"\/unterhaltung\/produkt\/introduction-to-materials-for-advanced-energy-systems\/","low_price_merchant_name":"eUniverse"}
undefined
Tarzan. Sonntagsseiten 1949 - 1950
Comic-Abenteuer von Tarzan. In den Jahren 1949 und 1950 zeigt Burne Hogarth nochmals sein grossartiges zeichnerisches Können. Auf den ersten 39...
undefined
Composite, Hybrid, and Multifunctional Mat...
Characterizing the Mechanical Response of a Biocomposite Using the Grid Method.- Preliminary Study on the Production of Open Cells Aluminum Foam by...
undefined
Diagnosis of Cutaneous Lymphoid Infiltrates
Part I: The Basics.- Clinical Pathological Correlation.- Skin Biopsy Evaluation.- Lymphocyte Morphology.- Lymphoid Follicle Morphology and Componen...
undefined
Building the Foundation: Whole Numbers in ...
Part I. Introductory section.- Chapter 1. Building a strong foundation concerning whole numbers arithmetic in primary grades: editorial introductio...
undefined
Next Generation Sequencing in Cancer Resea...
Single-cell next Generation Sequencing and Its Applications in Cancer Biology.- Utility of Next Generation Sequencing in Cancer Drug Development an...
undefined
Earthquake Engineering and Structural Dyna...
1. Full-Scale Measurement and Analysis of Wind-Induced Vibrations of a Long-Span Suspension Bridge in Complex Terrain - Aksel et al. 2. Challenges ...
undefined
Persepolis, English edition. Pt.2
'Wildly charming . . . Like a letter from a friend, in this case a wonderful friend: honest, strong-willed, funny, tender, impulsive, and self-awar...
undefined
Nonlinear Dynamics, Volume 1
1 Nonlinear Vibrations of a Beam with a Breathing Edge Crack Using Multiple Trial Functions.- 2 Enforcing Linear Dynamics Through the Addition of N...
undefined
Residual Stress and Its Effects on Fatigue...
Organizers, Preface of ECF16 Chairman, Preface of Symposium Chairman, Session: Residual stress analysis by modelling techniques - I: Residual Stres...
undefined
Handbook of Multivariate Experimental Psyc...
I Multivariate Method and Theory Construction.- 1 Psychological Theory and Scientific Method.- 1. The Role of Methodology in Science.- 2. Design of...
undefined
Rotating Machinery, Hybrid Test Methods, V...
1 Practical Techniques for Scaling of Optically Measured Operating Deflection Shapes.- 2 Prediction of the Coupled Impedance from Frequency Respons...
undefined
Project Management and Engineering
Preface.- Acknowledgments.- I. PROJECT MANAGEMENT.- An international analysis of project delivery systems for public works projects, by De Sande I,...
undefined
Three-Dimensional Nanoarchitectures
1. Building Three dimensional Nanostructured Devices by Self-Assembly by Steve Hu, Jeong-Hyun Cho and David H. GraciasSummary1.1.0 The pressing nee...
undefined
Introduction to Materials for Advanced Ene...
Preface 1 Materials based solutions to advanced energy systems Abstract1.1 Advanced energy technology and contemporary issues 1.1.1 ...