magnet gefunden in Unterhaltung
✖
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste




CHF 177.00
Rare Metal Technology 2017
Part 1: Rare Earth Elements I.- The Economics of the Search Minerals Direct Extraction Process for Rare Earth Recovery.- Recovery of Critical Rare Earth Elements for Green Energy Technologies.- Selective Reduction and Separation of Europium from Mixed Rare-Earth Oxides from Waste Fluorescent Lamp Phosphors.- Application of Rare Earths for Higher Efficiencies in Energy Conversion.- Mic... zur Produkt-Seite
4882826 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9pLndlbHRiaWxkLmRlL3AvcmFyZS1tZXRhbC10ZWNobm9sb2d5LTIwMTctMjc0NzQ1MzgwLmpwZw==!aHR0cHM6Ly9pLndlbHRiaWxkLmRlL3AvcmFyZS1tZXRhbC10ZWNobm9sb2d5LTIwMTctMjc0NzQ1MzgwLmpwZ3x+fGh0dHBzOi8vb3MxLm1laW5lY2xvdWQuaW8vYjEwMTU4L21lZGlhL2ltYWdlLzNjL2NkL2ViLzYwODIxMTYyMDAwMDFBXzYwMHg2MDAuanBn","post_title":"Rare Metal Technology 2017","deeplink":"https:\/\/track.adtraction.com\/t\/t?a=1632201226&as=1592767275&t=2&tk=1&url=https:\/\/www.weltbild.ch\/artikel\/x\/_22320667-1","labels":[],"brand_id":1,"post_content":"Part 1: Rare Earth Elements I.- The Economics of the Search Minerals Direct Extraction Process for Rare Earth Recovery.- Recovery of Critical Rare Earth Elements for Green Energy Technologies.- Selective Reduction and Separation of Europium from Mixed Rare-Earth Oxides from Waste Fluorescent Lamp Phosphors.- Application of Rare Earths for Higher Efficiencies in Energy Conversion.- Microwave Treatment for Extraction of Rare Earth Elements from Phosphogypsum.- Selective Separation of Rare Earth Elements Utilizing Vapor Phase Extraction.- Observation of Oxidation of Nd-Magnet In High Temperature Recycling\/Recovery Process.- Part 2: Rare Earth Elements II and Platinum Group Metals.- Electrochemical Behavior of Neodymium in Molten Chloride Salts.- Novel Reactive Anode for Electrochemical Extraction of Rare Earth Metals from Rare Earth Oxides.- Electrochemical Formation of Nd Alloys Using Liquid Metal Electrodes in Molten LiCl-KCl Systems.- Challenges in the Electrolytic Refining of Silver - Influencing the Co-Deposition through Parameter Control.- Vapor Treatment for Alloying and Magnetizing Platinum Group Metals.- Biotechnological Recovery of Platinum Group Metals from Leachates of Spent Automotive Catalysts.- Recovering Palladium from Chloridizing Leaching Solution of Spent Pd\/Al2O3Catalyst by Sulfide Precipitation.- Mechanism of Intensifying Cyanide Leaching of Gold from a Calcine by the Pretreatment of Acid or Alkali Washing.- Part 3: Base and Rare Metals.- Disclosure of the Kinetic Relations of Semidirect Cemented Carbide Leaching in Acid Media.- A New Two-Stage Process for Preparation of Ti\/Ti-Al Alloys.- Study on Pre-Reduction Mechanisms of Chromium Ore Pellets in SRC Process.- Recovery of Valuable Metals from High-Content Arsenic Containing Copper Smelting Dust.- Sulfuric Acid Leaching of Mechanically Activated Vanadium-Bearing Converter Slag.- Present Status and Development of Comprehensive Utilization of Vanadium-Titanium Magnetite.- Review of TiO2-Rich Materials Preparation for the Chlorination Process.- Part 4: Poster Session.- Adsorbents for Selective Recovery of Heavy Rare Earth Elements.- Behavior of Sec-Octylphenoxy Acetic Acid (CA-12) in Yttrium Recovery from High Concentrated Heavy Rare Earths Mixture.- Preparation of Molybdenum Powder from Molybdenite Concentrate Through Vacuum Decomposition-Acid Leaching Combination Process.- Pressure Leaching Behavior of Molybdenum-Nickel Sulfide from Black Shale.- Selective Recovery of Scandium from Sulfating Roasting Red Mud by Water Leaching.- Study for Preparation of Industrial Ammonium Molybdate from Low Grade Molybdenum Concentrate.- Study of a Synergistic Solvent Extracting System to Separate Yttrium and Heavy Rare Earths: A Deep Investigations on System Behavior.- The Recovery of Bismuth from Bismuthinite Concentrate Through Membrane Electrolysis.","merchants_number":2,"ean":9783319510842,"category_id":103,"size":null,"min_price":177,"low_price_merchant_id":27291482,"ID":4882826,"merchants":["weltbild","euniverse"],"brand":"undefined","slug":"rare-metal-technology-2017","url":"\/unterhaltung\/produkt\/rare-metal-technology-2017\/","low_price_merchant_name":"Weltbild"}



CHF 21.40
Physik, Warum ist der Himmel so blau?
Warum... ... ist der Himmel blau? ... haften Saugnäpfe? ... quietscht Kreide auf der Tafel? ... soll man kein Metall in die Mikrowelle stellen? ... schwimmt ein Schiff? ... ist Schnee weiss? ... fliegt ein Flugzeug? ... kann man um die Ecke hören, aber nicht sehen? ... blitzt es bei Gewitter? ... sind Menschen bei Flut leichter als bei Ebbe? ... ist es leichter, Unordnung zu machen, a... zur Produkt-Seite
4586814 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9pLndlbHRiaWxkLmRlL3AvZ2Vva29tcGFrdC1waHlzaWstMzQ2ODI4MDMyLmpwZw==!fH58aHR0cHM6Ly9pLndlbHRiaWxkLmRlL3AvZ2Vva29tcGFrdC1waHlzaWstMzQ2ODI4MDMyLmpwZw==","post_title":"Physik, Warum ist der Himmel so blau?","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=31523280465&a=401125&m=13971&pref1=9783652002295","labels":[],"brand_id":1,"post_content":"Warum... ... ist der Himmel blau? ... haften Saugn\u00e4pfe? ... quietscht Kreide auf der Tafel? ... soll man kein Metall in die Mikrowelle stellen? ... schwimmt ein Schiff? ... ist Schnee weiss? ... fliegt ein Flugzeug? ... kann man um die Ecke h\u00f6ren, aber nicht sehen? ... blitzt es bei Gewitter? ... sind Menschen bei Flut leichter als bei Ebbe? ... ist es leichter, Unordnung zu machen, als Ordnung zu schaffen? ... ist Glas durchsichtig? ... pl\u00e4tschert ein Bach? ... scheinen im Spiegel rechts und links vertauscht zu sein, nicht aber oben und unten? ... steigt warme Luft auf? ... schwimmt Eis auf dem Wasser? ... hilft es nicht, den Aufprall zu lindern, wenn man in einem abst\u00fcrzenden Fahrstuhl nach oben springt? ... gibt es Sand am Strand? ... f\u00e4llt ein Stein schneller zu Boden als eine Feder? ... k\u00f6nnen Fische unter Wasser atmen? ... kann niemand voraussagen, wie \u00fcbern\u00e4chste Woche das Wetter sein wird? ... st\u00fcrzt der Mond nicht auf die Erde? ... platzen W\u00fcrstchen beim Erhitzen stets der L\u00e4nge nach auf? ... kehrt ein Bumerang zur\u00fcck? ... erscheint unter Wasser alles gr\u00f6sser? ... erzeugt ein K\u00fchlschrank mehr W\u00e4rme als K\u00e4lte? ... verhindert Salz die Entstehung von Eis auf den Strassen? ... ist ein Spinnenfaden st\u00e4rker als Stahl? 94 ... entsteht ein Ton, wenn man in eine Fl\u00f6te bl\u00e4st? ... wird ein Induktionsherd nicht heiss - sondern erw\u00e4rmen sich nur die T\u00f6pfe? ... rutschen wir auf Eis aus? ... kann ein Radio Daten empfangen? ... bleibt eine Billardkugel beim Stoss liegen? ... ist Gold so selten? ... knallt ein Sektkorken - und spritzt der Schaumwein manchmal aus der Flasche? ... kann Strom aus einer 220-Volt-Steckdose t\u00f6dlich sein, Strom aus einem 10.000-Volt- Weidezaun jedoch nicht? ... ist nichts schneller als das Licht? ... leuchtet Feuer? ... gibt es Jahreszeiten? ... kocht Wasser auf einem Berggipfel schon bei knapp 90 Grad Celsius? ... zieht ein Magnet Eisen an? ... kann man eine Tischdecke unter dem Geschirr wegziehen? ... l\u00e4sst sich Luft zusammenpressen, Wasser aber nicht? ... erm\u00f6glicht es Ultraschall, in den K\u00f6rper zu schauen? ... kann man die meisten Touchscreens nicht mit einem Handschuh bedienen, wohl aber mit einer Gew\u00fcrzgurke? ... wird an kalten Tagen der Atem sichtbar? ... sp\u00fclt man schmutziges Geschirr mit heissem Wasser? ... merken wir nichts davon, dass die Erde mit mehr als 100.000 km\/h durchs All rast? ... staut sich der Verkehr auf der Autobahn? ... kann man eine Kerze auspusten? Grunds\u00e4tze: Gesetze der Physik Acht fundamentale Prinzipien, ohne die es unsere Welt nicht g\u00e4be Antarktis: Jagd nach Neutrinos Forschung unter Extrembedingungen Interview: Die Physik des Fussballs Professor Metin Tolan dar\u00fcber, warum man auch ohne Formeln fast alles erkl\u00e4ren kann","merchants_number":2,"ean":9783652002295,"category_id":103,"size":null,"min_price":21.39999999999999857891452847979962825775146484375,"low_price_merchant_id":70254503,"ID":4586814,"merchants":["orell-fuessli","weltbild"],"brand":"undefined","slug":"physik-warum-ist-der-himmel-so-blau","url":"\/unterhaltung\/produkt\/physik-warum-ist-der-himmel-so-blau\/","low_price_merchant_name":"Orell F\u00fcssli"}



CHF 143.00
Introduction to Materials for Advanced Energy Systems
Preface 1 Materials based solutions to advanced energy systems Abstract1.1 Advanced energy technology and contemporary issues 1.1.1 Challenges and concerns 1.1.2 The role of the advanced materials1.1.3 Solutions for future energy systems 1.2 Fundamentals of energy systems1.2.1 Energy and service1.2.2 Energy process characterization1.2.2.1... zur Produkt-Seite
4749383 {"price-changing":0.090722856306701793460689486892079003155231475830078125,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvODIvMTUvNTcvNzEzOTgxNDUwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvODIvMTUvNTcvNzEzOTgxNDUwMDAwMUFfNjAweDYwMC5qcGd8fnxodHRwczovL2M0LXN0YXRpYy5kb2RheC5jb20vdjIvMTgwLTE4MC0xMjA4MTI0ODRfQXcyTTIyLXBuZw==","post_title":"Introduction to Materials for Advanced Energy Systems","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9783319980010&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Ftechnik%2F477940%2Fintroduction-to-materials-for-advanced-energy-systems%3FsPartner%3Dtoppreise","labels":[],"brand_id":1,"post_content":"Preface 1 Materials based solutions to advanced energy systems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Abstract1.1\u00a0 Advanced energy technology and contemporary issues 1.1.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Challenges and concerns 1.1.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 The role of the advanced materials1.1.3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Solutions for future energy systems 1.2\u00a0 Fundamentals of energy systems1.2.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Energy and service1.2.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Energy process characterization1.2.2.1\u00a0 The laws of thermodynamics 1.2.2.2\u00a0 Macroscopic and microscopic energy systems1.2.2.3\u00a0 Entropy and enthalpy1.2.2.4\u00a0 Chemical kinetics1.2.2.5\u00a0 Energy availability\u00a01.2.3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Energy calculations and accounting1.2.3.1\u00a0 Energy efficiency1.2.3.2\u00a0 Heating values1.2.4\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 General energy devices1.2.4.1\u00a0 Conversion devices1.2.4.2\u00a0 Energy storage1.2.4.3\u00a0 Systems engineering1.2.4.4\u00a0 Electricity1.2.5\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Sustainable energy1.3\u00a0 Materials development for advanced energy systems1.3.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Functional surface technologies1.3.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Materials integration in sustainable energy systems1.3.3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Higher-performance materials1.3.4\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Sustainable manufacturing of materials1.3.5\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Materials and process development acceleration tools\u00a0\u00a0\u00a0 1.4\u00a0 Summary \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises2 Fundamentals of materials used in energy systems\u00a0\u00a0 Abstract2.1 Structures of solids2.1.1 Atomic structures2.1.2 Crystal structures2.1.2.1 Structures for elements2.1.2.2 Structures for compounds2.1.2.3 Solid solutions2.1.3 Crystal diffraction2.1.3.1 Phase difference and Bragg's law2.1.3.2 Scattering2.1.3.3 Reciprocal space2.1.3.4 Wave vector representation2.1.4 Defects in solids2.1.4.1 Point defects2.1.4.2 Line defects2.1.4.2.1 Edge dislocations2.1.4.2.2 Screw dislocations2.1.4.2.3 Burger's vector and burger circuit2.1.4.2.4 Dislocation motion2.1.4.3 Planar defects2.1.4.3.1 Grain boundaries2.1.4.3.2 Twin boundaries2.1.4.4 Three-dimensional defects2.1.5 Diffusion in solids2.1.5.1 Atomic theory 2.1.5.2 Random walk2.1.5.3 Other mass transport mechanisms2.1.5.3.1 Permeability versus diffusion2.1.5.3.2 Convection versus diffusion2.1.5.4 Mathematics of diffusion2.1.5.4.1 Steady state diffusion2.1.5.4.2 Non-steady state diffusion2.1.6 Electronic structure of solids2.1.6.1 Waves and electrons2.1.6.1.2 Representation of waves 2.1.6.1.2 Matter waves 2.1.6.1.3 Superposition \u00a02.1.6.1.4 Electron waves 2.1.6.2 Quantum mechanics 2.1.6.3 Electron energy band representations 2.1.6.4 Real energy band structures 2.1.6.5 Other aspects of electron energy band structure 2.2 Phase equilibria2.2.1 The Gibbs phase rule2.2.1.1 The phase rule on equilibrium among phases2.2.1.2 Applications of the phase rule2.2.1.3 Construction of phase diagrams2.2.1.4 The tie line principle2.2.1.5 The lever rule 2.2.2 Nucleation and growth of phases2.2.2.1 Thermodynamics of phase transformations2.2.2.2 Nucleation2.3 Mechanical properties2.3.1 Elasticity relationships2.3.1.1 Ture versus engineering strain2.3.1.2 Nature of elasticity and Young's Modulus2.3.1.3 Hook's law2.3.1.4 Poisson's ratio2.3.1.5 Normal forces2.3.2 Plasticity observations2.3.3 Role of dislocation in deformation of crystalline materials2.3.4 Deformation of noncrystalline materials 2.3.4.1 Thermal behavior of amorphous solids 2.3.4.2 Time-dependent deformation of amorphous materials 2.3.4.3 Models for network2.3.4.4 Elastomers2.4 Electronic properties of materials2.4.1 Occupation of electronic states 2.4.1.1 Density of states function2.4.1.2 The Fermi-Dirac distribution function 2.4.1.3 Occupancy of electronic states 2.4.2 Position of the Fermi energy 2.4.3 Electronic properties of metals2.4.3.1 Free electron theory for electrical conduction 2.4.3.2 Quantum theory of electronic conduction 2.4.3.3 Superconductivity 2.4.4 Semiconductors 2.4.4.1 Intrinsic semiconductors 2.4.4.2 Extrinsic semiconductors 2.4.4.3 Semiconductor measurements 2.4.5 Electrical behavior of organic materials 2.4.6 Junctions and devices and the nanoscale2.4.6.1 Junctions 2.4.6.1.1 Metal-metal junctions 2.4.6.1.2 Metal-semiconductor junctions 2.4.6.1.3 Semiconductor-semiconductor PN junctions 2.4.6.2 Selected devices 2.4.6.2.1 Passive devices 2.4.6.2.2 Active devices 2.4.6.3 Nanostructures and nanodevices 2.4.6.3.1 Heterojunction nanostructures 2.4.6.3.2 2-D and 3-D nanostructures 2.5 Computational modeling of materials2.5.1 The challenge of complexity2.5.2 Materials design with predictive capability2.5.3 Materials modeling approaches2.6 Advanced experimental techniques for materials characterization2.6.1 Dynamic mechanical spectroscopy2.6.2 Nanoindentation2.6.3 Light microscopy2.6.4 Electron microscopy2.6.5 Atom probe tomography2.6.6 Advanced X-ray characterization2.6.7 Neutron scattering2.7 Integrated materials process control 2.7.1 Process control and its constituents2.7.1.1 Sensing techniques2.7.1.2 Input parameters for combustion control2.7.2 Diagnostic techniques2.3.2.1 Optical diagnostics2.3.2.2 Solid-state sensors2.8 Summary\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises 3 Advanced materials enable energy production from fossil fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0Abstract\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.1 Materials technology status and challenges in fossil energy systems3.1.1 Boilers3.1.2 Steam turbines3.1.3 Gas turbines3.1.4 Gasifiers3.1.5 CO2 capture and storage3.1.6 Perspectives 3.2 Materials for ultra-supercritical applications 3.2.1 High temperature alloys\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.2.2 Advanced refractory materials for slagging gasifiers\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.2.3 Breakthrough materials \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.3 Coatings and protection materials for steam system3.3.1 High temperature and high pressure coatings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.3.2 Oxygen ion selective ceramic membranes for carbon capture\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.4 Materials for deep oil and gas well drilling and construction\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.4.1 High stress and corrosion resistant propping agents\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.4.2 Erosion- and corrosion-resistant coatings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a03.4.3 Wear resistant coatings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.4.4 High strength and corrosion resistant alloys for use in well \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 casings and deep well drill pipe\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.5 Materials for sensing in harsh environments\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 References\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises4\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Materials-based solutions to solar energy system\u00a0\u00a0 Abstract4.1\u00a0 Solar energy technologies4.1.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Photovoltaic technologies4.1.1.1\u00a0 Residential photovoltaic4.1.1.2\u00a0 Utility-scale flat-plate thin film photovoltaic4.1.1.3\u00a0 Utility-scale photovoltaic concentrators4.1.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Solar thermal technologies4.1.2.1\u00a0 Unglazed collectors4.1.2.2\u00a0 Glazed collectors4.1.2.3\u00a0 Parabolic trough4.1.2.4\u00a0 Vacuum tube collectors4.1.2.5\u00a0 Linear Fresnel lens reflectors4.1.2.6 Solar Stirling engine4.2\u00a0 Photovoltaic materials and devices4.2.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Crystalline silicon PV cells4.2.1.1 Mono-crystal silicon PVs4.2.1.2\u00a0 Polycrystalline silicon PVs4.2.1.3 Emitter wrap-through cells4.2.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Thin-film PV cells4.2.2.1 Amorphous Silicon Cells4.2.2.1.1 Amorphous-Si, double or triple junctions4.2.2.1.2 Tandem amorphous-Si and multi-crystalline-Si4.2.2.2 Ultra-thin silicon wafers4.2.2.3 Cadmium telluride and cadmium sulphide4.2.2.4 Copper indium selenide and copper indium gallium selenide4.2.3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Compound semiconductor PV cells4.2.3.1 Space PV cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a04.2.3.2 Light absorbing dyes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.3.3 Organic and polymer PV\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.3.4 Flexible plastic organic transparent cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4 Nanotechnology for PV cell fabrication\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.1 Silicon nanowires\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.2 Carbon nanotubes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.3 Graphene-based solar cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.4 Quantum dots\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.5 Hot carrier solar cell\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.6 Nanoscale surfaces reduce reflection and increase\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 capture of the full spectrum of sunlight4.2.5 Hybrid solar cells4.2.5.1 Hybrid organic-metal PVs 4.2.5.2 Hybrid organic-organic PVs 4.2.6 Inexpensive plastic solar cells or panels that are mounted on \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 curved surfaces4.3 Advanced materials for solar thermal collectors4.3.1 Desirable features of solar thermal collector materials4.3.1.1 Transparent cover4.3.1.2 Insulation4.3.1.3 Evacuated-tube collectors4.3.2 Polymer materials in solar thermal collectors4.3.3 Corrosion resistant materials in contact with molten salts4.4 Reflecting materials for solar cookers4.5 Optical materials for absorbers4.5.1 Metals4.5.2 Selective coatings4.5.2.1 Intrinsic absorption coatings4.5.2.2 Semiconductor-metal tandems4.5.2.3 Multilayer absorbers4.5.2.4 Metal-dielectric composite coatings4.5.2.5 Surface texturing4.5.2.6 Selectively solar-transmitting coating on a blackbody-like absorber4.5.3 Heat pipes4.5.4 Metamaterial solar absorbers4.5.4.1 Metal-dielectric nanocomposites with tailored plasmonic response 4.5.4.2 Light weight broadband nanocomposite perfect absorbers4.3.4.3 Prospects and future trends4.6 Thermal energy storage materials4.6.1 Sensible thermal energy storage4.6.2 Underground thermal energy storage4.6.3 Phase change materials4.6.4 Thermal energy storage via chemical reactions\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises5 Advanced materials enable renewable geothermal energy capture and generation\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Abstract\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 5.1 Geothermal technologies5.1.1 Geothermal resources for geothermal energy development5.1.2 Geothermal electricity5.1.3 Enhanced geothermal systems and other advanced geothermal technologies5.1.4 Direct use of geothermal energy5.2 Hard materials for downhole rock drilling5.3 Advanced cements for geothermal wells5.4 Geothermal heat pumps5.4.1 Pumping materials5.4.2 Pumping technology5.4.3 Heat pump applications5.5 Materials for transmission pipelines and distribution netorks5.6 Materials for heat exchange systems5.6.1 Heat exchange fluids5.6.2 Heat exchanger coatings5.6.3 Polymer heat exchangers5.6.4 Heat convector materials5.6.5 Refrigeration materials for cooling systems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 5.7 Corrosion protection and material selection for geothermal systems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises6 Advanced materials enable renewable wind energy capture and generation\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Abstract\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1 Wind resources\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.1 Wind quality\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.2 Variation of wind speed with elevation\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.3 Air density\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.4 Wind forecasting\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.5 Offshore wind\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.6 Maximum wind turbine efficiency: The Betz ratio6.2 Materials requirements of wind machinery and generating systems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1 Driven components\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1.1 Shafts\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1.2 Bearings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1.3 Couplings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1.4 Gear boxes \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a06.2.1.5 Generators\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.2 Tower\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.2.1 Tower structure\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.2.2 Tower flange\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.2.3 Power electronics\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.3 Rotor \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.3.1 Blade \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a06.2.3.2 Blade extender\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.3.3 Hub\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.3.4 Pitch drive\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4 Nacelle \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.1 Case\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.2 Frame\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.3 Anemometer\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a06.2.4.4 Brakes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.5 Controller\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.6 Convertor\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.7 Cooling system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.8 Sensors\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.9 Yaw drive\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.5 Balance-of-station subsystems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.6 System design challenges6.3 Wind turbine types and structures6.3.1 Horizontal-axis wind turbines6.3.2 Vertical-axis wind turbines6.3.3 Upwind wind turbines and downwind wind turbines6.3.4 Darrieus turbines6.3.5 Savonius turbines6.3.6 Giant Multi-megawatt turbines6.4 General materials used in wind turbines\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.4.1 Cast iron and steel\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.4.2 Composite materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.4.3 Rare earth elements in magnet\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a06.4.4 Copper\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.4.5 Reinforced concrete6.5 Light weight composite materials for wind turbine blades\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.5.1 Reinforcement\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a06.5.2 Matrix\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.6 Smart and stealth wind turbine blade materials6.7 Permanent-magnet generators for wind turbine applications6.8 Future prospects\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises7 Advanced materials for ocean energy and hydropower7.1 Materials requirements for ocean energy technologies7.1.1 Tidal power7.1.2 Ocean current7.1.3 Wave energy7.1.4 Ocean thermal energy7.1.5 Salinity gradient7.2 Advanced materials and devices for ocean energy \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.1 Structure & prime mover\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.2 Foundations & moorings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.3 Power take off\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.4 Control\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.5 Installation \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.6 Connection\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.7 Operations & maintenance7.3 Wave energy converters\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.3.1 Types of WEC7.4 Tidal energy converters\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.4.1. Types of TEC\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.4.2. Further Permutations7.5 Arrays7.6 Challenges faced by the ocean energy\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.1 Predictability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.2 Manufacturability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.3 Installability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.4 Operability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.5 Survivability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.6 Reliability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.7 Affordability7.7 Materials requirements for hydropower system\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0 7.7.1 Retaining structure materials for dams and dikes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.7.2 Structural materials and surface coatings for turbines runners, draft tubes \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 and penstocks\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises8 Biomass for bioenergy8.1 Materials requirements for biomass technologies\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.1.1 Biomass for power and heat\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.1.2 Biogas\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.1.3 Biofuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.1.4 Biorefineries8.2 Corrosion resistant materials for biofuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.2.1 Metal and its alloys\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.2.2 Elastomers8.3 Nanocatalysts for conversion of biomass to biofuel\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.3.1 Nanocatalysts for biomass gasification\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.3.2 Nanocatalysts for biomass liquefaction\u00a0 8.4 Coal-to-liquid fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.4.1 Basic chemistry\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.4.2 CTL technology options8.5 Materials for combustion processes8.6 Materials for capturing CO2 for using as a nutrient to cultivate alga8.7 Materials for water filtration and desalinationReferenceExercises9 Hydrogen and fuel cells9.1 Introduction9.2 Hydrogen generation technology\u00a09.2.1 Steam methane reforming\u00a09.2.2 Electrolysis9.3 Hydrogen conversion and storage technology\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.1 Fuel cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.2 Hydrogen gas turbines\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.3 Compressed hydrogen gas\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.4 Liquid hydrogen storage in tanks\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.5 Physisorption of hydrogen and its storage in solid structures9.4 Materials-based hydrogen storage \u00a09.4.1 Nanoconfined hydrogen storage materials\u00a09.4.2 Complex hydrides\u00a09.4.3 Reversible hydrides\u00a09.4.4 Hydrogen storage in carbonaceous materials \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a09.4.5 Hydrogen storage in zeolites and glass microspheres \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a09.4.6 Hydrogen storage in organic frameworks \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.4.7 Hydrogen Storage in Polymers 9.4.8 Hydrogen storage in formic acid9.5 Fuel cell materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.1 Anode Materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.2 Cathode Materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.3 Electrolytes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.4 Catalysts (Catalysts for the oxygen reduction reaction)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.5 Sputtering Targets\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.6 Current Collectors (Higher-temperature proton conducting materials)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.7 Support Materials (Low-cost materials resistant to hydrogen-assisted \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 cracking and embrittlement)9.6 Applications of fuel cells9.6.1 Alkaline Fuel Cells9.6.2 Proton Exchange Membrane Fuel Cells \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.6.3 Direct Methanol Fuel Cells 9.6.4 Phosphoric Acid Fuel Cells 9.6.5 Molten Carbonate Fuel Cells 9.6.6 Solid Oxide Fuel Cells \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.6.7 Solid oxide fuel cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.6.8 Polymer electrolyte membrane fuel cellsReferenceExercises10 Role of materials to advanced nuclear energy\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Abstract10.1 Fission and fusion technologies10.1.1 Nuclear reactors\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.1.2 Nuclear power fuel resources (fuel cycle)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.1.3 Fusion energy\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.1.3.1 Magnetic fusion energy\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.1.3.2 Inertial fusion energy10.2 Materials selection criteria\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.1 General considerations\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2 General mechanical properties\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2.1 Fabricability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2.2 Dimension stability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2.3 Corrosion resistance\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2.4 Heat transfer properties\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.3 Special considerations\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.3.1 Neutronic properties\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.3.2 Susceptibility to induced radioactivity\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.3.3 Radiation stability10.3 Materials for reactor components\u00a010.3.1 Structure and fuel cladding materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.1 Advanced radiation resistant structural materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.1.1 Ultrahigh strength alloys\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.1.1 Ultrahigh toughness ceramic composites\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.2 Advanced refractory, ceramic, graphitic or coated materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.3 Corrosion and damage resistant materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.4 Pressure vessel steel\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.4.1 Corrosion resistant nickel base alloys\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.4.2 Dimensionally stable zirconium fuel cladding\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.5 Ultra high temperature resistance structural materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.2 Moderators and reflectors\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a010.3.3 Control materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.4 Coolants\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.5 Shielding materials\u00a0\u00a0\u00a0\u00a0 10.4 Nuclear fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a010.4.1 Metallic fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a010.4.2 Ceramic fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0 10.5 Cladding materials^ Zirconium-based cladding 3-14\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.5.2 Iron-based cladding 3-19\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.5.3 Advanced gas-cooled reactor cladding 3-19\u00a0\u00a0\u00a0\u00a0 10.6 Low energy nuclear reactions in condensed matter\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0 10.7 Advanced computational materials performance modeling\u00a0\u00a0\u00a0\u00a0\u00a0 References\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0 Exercises\u00a0\u00a0 11. Emerging materials for energy harvesting11. 1 Introduction11.2 Thermoelectric Materials11.2.1 Characterizations of thermoelectric Materials11.2.2 Structures\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Oxides and SilicidesHalf-Heusler compoundsSkutterudite Materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Clatherate Materials11.2.3 PropertiesThermal ConductivityFermi SurfaceMorphology\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.2.4 Nano-materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.2.5 Applications11.3 Piezoelectric Materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.3.1 Fundamentals of piezoelectricity\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.3.2 Equivalent circuit of a piezoelectric harvester\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.3.4 Advances of piezoelectric materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Ceramics \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Single crystals \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Polymers\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Composites\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.3.5 Energy harvesting piezoelectric devices\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a011.3.6 Applications11.4 Pyroelectric materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.1 The pyroelectric effect\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.2 Types of pyroelectric materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.3 Pyroelectric cycles for energy harvesting\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.4 Pyroelectric harvesting devices\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.5 Applications11.5 Magnetic Induction system \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.5.1 Architecture and Operational Mechanism11.5.2 Magnet-through-coil Induction 11.5.2.1 Geometry 11.5.2.2 Magnetic flux Generated by the Bar Magnet11.5.2.3 Coil Inductance and Resistance 11.5.2.4 Voltage and Power Generation 11.5.3 Magnet-across-coils Induction 11.5.3.1 Geometry 11.5.3.2 Magnetic Field Generated by the Magnets11.5.3.3 Magnetic Field Generated by Coil Current11.5.3.4 Coil Self-Inductance, Mutual Inductance, and Resistance11.5.3.5 Voltage and Power Generation 11.5.4 Magnetic materials 11.5.5 Magnetic devices11.5.6 Applications\u00a0\u00a0\u00a0\u00a0\u00a0 11.6 Mechanoelectric energy harvesting materials\u00a0\u00a0\u00a0\u00a0\u00a0 References\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0 Exercises\u00a0\u00a0 12 Perspectives and future trends\u00a0\u00a0\u00a0\u00a0 12.1 Sustainability 12.1.1 Efficient use of energy-intensive materials 12.1.2 Retention of strategic materials12.1.3 Extraction technologies to recycle strategic materials12.1.4 Green manufacturing and energy production processes12.1.5 Mitigation of negative impacts of energy technology and economic growth\u00a0\u00a0\u00a0 12.2 Metamaterials and nanomaterials for energy systems\u00a0\u00a0 \u00a0\u00a0\u00a0 12.3 Artificial photosynthesis\u00a0\u00a0\u00a0 12.4 Structural power composites\u00a0\u00a0\u00a0 12.5 Future energy storage materials\u00a0\u00a0\u00a0 12.6 Hybrid Alternative Energy Systems12.6.1 Combining alternative energy components 12.6.2 Uses for hybrid energy systems12.6.3 Solar and wind power combinations12.6.4 Pumped-storage and wind generated hydroelectricity12.6.5 Harvesting zero-point energy from the vacuum12.6.6 Combined energy harvesting techniques\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises","merchants_number":2,"ean":9783319980010,"category_id":103,"size":null,"min_price":143,"low_price_merchant_id":70255345,"ID":4749383,"merchants":["euniverse","dodax"],"brand":"undefined","slug":"introduction-to-materials-for-advanced-energy-systems","url":"\/unterhaltung\/produkt\/introduction-to-materials-for-advanced-energy-systems\/","low_price_merchant_name":"eUniverse"}



CHF 48.90
Unterwegs
Bekannt wurde der französische Schriftsteller Joris-Karl Huysmans (1848-1907) in Deutschland vor allem durch seine Romane 'À rebours' ('Gegen den Strich', 1884) und 'Là-bas' ('Tief unten', 1891) bekannt. 'À rebours' gilt als eines der wichtigsten Zeugnisse der literarischen Dekadenz des Fin de siècle, sein Protagonist, der dem Ästhetizismus verfallene Dandy Jean des Esseintes, als Inb... zur Produkt-Seite
5469851 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9hc3NldHMudGhhbGlhLm1lZGlhL2ltZy9hcnRpa2VsLzRlYWI3NWI1ZjYyM2ZjZmNmMjM5ZjMxMzY0Y2M5MjNiZTMzMzIyMWUtMDAtMDAuanBlZw==!aHR0cHM6Ly9hc3NldHMudGhhbGlhLm1lZGlhL2ltZy9hcnRpa2VsLzRlYWI3NWI1ZjYyM2ZjZmNmMjM5ZjMxMzY0Y2M5MjNiZTMzMzIyMWUtMDAtMDAuanBlZw==","post_title":"Unterwegs","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=25179915087&a=401125&m=13971&pref1=9783943157925","labels":[],"brand_id":1,"post_content":"Bekannt wurde der franz\u00f6sische Schriftsteller Joris-Karl Huysmans (1848-1907) in Deutschland vor allem durch seine Romane '\u00c0 rebours' ('Gegen den Strich', 1884) und 'L\u00e0-bas' ('Tief unten', 1891) bekannt. '\u00c0 rebours' gilt als eines der wichtigsten Zeugnisse der literarischen Dekadenz des Fin de si\u00e8cle, sein Protagonist, der dem \u00c4sthetizismus verfallene Dandy Jean des Esseintes, als Inbegriff des 'd\u00e9cadent'. In 'L\u00e0-bas' wandelt der Schriftsteller Durtal, fasziniert von Satanismus und schwarzer Magie, auf den Spuren des Kinderschl\u00e4chters Gilles de Rais, der wegen seiner zahllosen Verbrechen und blutr\u00fcnstigen magischen Rituale im 15. Jahrhundert verbrannt wurde. In beiden Romanen ist allerdings auch schon der Keim angelegt f\u00fcr Huysmans’ Hinwendung zum Glauben, der 1892 in die Konversion zum Katholizismus, mehrfache Klosteraufenthalte und, ab 1900, im Leben als Oblate m\u00fcndet. Seine Hinwendung zum Katholizismus hat Huysmans in der Trilogie des Glaubens: 'En route' (1895), 'La Cath\u00e9drale' (1898) und 'L’Oblat' (1903) literarisch verarbeitet, in der er sein jahrelanges, von immer neuen Zweifeln erf\u00fclltes Ringen um den Glauben beschreibt. Wiederum wird Durtal zu seinem alter ego, der die Stationen dieser spirituellen Autobiographie noch einmal stellvertretend durchlebt. Eine zentrale Rolle spielt dabei die Kunst, in 'La Cath\u00e9drale' insbesondere die Architektur am Beispiel der Kathedrale von Chartres, in 'En route' die Sakralmusik in Form des Cantus planus und des Gregorianischen Gesangs: 'Letztlich war Durtal durch die Kunst zur Religion zur\u00fcckgef\u00fchrt worden. Mehr als sein Lebensekel war die Kunst der Magnet gewesen, der ihn unwiderstehlich zu Gott hingezogen hatte. An dem Tag, an welchem er aus Neugier, um die Zeit totzuschlagen, in die Kirche gegangen war und dort nach so vielen Jahren des Vergessens die Teile der Totenvesper schwer hatte herabfallen h\u00f6ren, w\u00e4hrend die Chors\u00e4nger sich abgewechselt und einer nach dem anderen wie Totengr\u00e4ber die Verse geschaufelt hatten, war seine Seele zutiefst ersch\u00fcttert worden.' Und trotzdem: '[.] beten? Ich habe nicht das Verlangen danach; der Katholizismus l\u00e4sst mir keine Ruhe, benebelt von seinen Weihrauchschwaden und seinem Kerzenduft, schleiche ich um ihn herum, zu Tr\u00e4nen ger\u00fchrt von seinen Psalmodien und Ges\u00e4ngen. Mein Leben ekelt mich an, ich bin meiner \u00fcberdr\u00fcssig, aber deswegen ein neues Leben zu f\u00fchren ist doch ein grosser Schritt!' In Deutschland ist diese Trilogie kaum zur Kenntnis genommen worden. Das mag an der sehr katholischen Thematik liegen. Dennoch geht von diesen Romanen eine grosse, nicht zuletzt auch sprachliche Faszination aus. W\u00e4hrend es von 'L’Oblat' bis heute keine deutsche \u00dcbersetzung gibt, wurde 'La Cath\u00e9drale', der bekannteste Roman der Trilogie 1923 von Hedda Eulenburg ins Deutsche \u00fcbersetzt und 1990, gr\u00fcndlich \u00fcberarbeitet von Susanne Farin, erneut ver\u00f6ffentlicht. 'En route' wurde 1910 von dem Theologen Albert Sleumer unter dem Titel Vom Freidenkertum zum Katholizismus \u00fcbersetzt, allerdings mehr in Form einer recht freien Paraphrase, manches auch zusammenfassend, und mit zahllosen Auslassungen, die von einzelnen S\u00e4tzen und Abs\u00e4tzen bis hin zu l\u00e4ngeren Passagen von bis zu zwei Seiten reichen (insgesamt fehlt etwa ein Viertel des Textes). Es ist daher \u00fcberf\u00e4llig, diesen Roman endlich in einer erstmals vollst\u00e4ndigen Neu\u00fcbersetzung vorzulegen. Erstmals (vollst\u00e4ndig) aus dem Franz\u00f6sischen \u00fcbersetzt von Michael von Killisch-Horn.","merchants_number":1,"ean":9783943157925,"category_id":103,"size":null,"min_price":48.89999999999999857891452847979962825775146484375,"low_price_merchant_id":70254503,"ID":5469851,"merchants":["orell-fuessli"],"brand":"undefined","slug":"unterwegs-31","url":"\/unterhaltung\/produkt\/unterwegs-31\/","low_price_merchant_name":"Orell F\u00fcssli"}



CHF 177.00
Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies
Part 1: Plenary Session.- Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies-Contributions of Professor Ramana Reddy.- Status of the Development of a Novel Flash Ironmaking Technology.- Innovations and Insights in Fluid Flow and Slime Adhesion for Improved Copper Electrorefining.- Molten Flux Design for Solid Oxide Membrane-Ba... zur Produkt-Seite
4882808 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9pLndlbHRiaWxkLmRlL3AvYXBwbGljYXRpb25zLW9mLXByb2Nlc3MtZW5naW5lZXJpbmctcHJpbmNpcGxlcy1pbi0yNzUwNzYxNTEuanBn!aHR0cHM6Ly9pLndlbHRiaWxkLmRlL3AvYXBwbGljYXRpb25zLW9mLXByb2Nlc3MtZW5naW5lZXJpbmctcHJpbmNpcGxlcy1pbi0yNzUwNzYxNTEuanBnfH58aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvNDgvMjIvOGIvNjA4MjExODQwMDAwMUFfNjAweDYwMC5qcGc=","post_title":"Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies","deeplink":"https:\/\/track.adtraction.com\/t\/t?a=1632201226&as=1592767275&t=2&tk=1&url=https:\/\/www.weltbild.ch\/artikel\/x\/_22320668-1","labels":[],"brand_id":1,"post_content":"Part 1: Plenary Session.- Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies-Contributions of Professor Ramana Reddy.- Status of the Development of a Novel Flash Ironmaking Technology.- Innovations and Insights in Fluid Flow and Slime Adhesion for Improved Copper Electrorefining.- Molten Flux Design for Solid Oxide Membrane-Based Electrolysis of Aluminum from Alumina.- Effect of Slag Phase on Mixing and Mass Transfer in a Model Creusot Loire Uddeholm (CLU) Converter.- Part 2: Electrometallurgy.- Modeling of Aluminum Electrowinning in Ionic Liquid Electrolytes.- Electrochemical Processing of Rare Earth Alloys.- Effect of Cobalt Concentration on the Potential for Oxygen Evolution from Pb-Ca-Sn Anodes in Synthetic Copper Electrowinning Electrolytes.- Cobalt electrodeposition from cobalt chloride using urea and choline chloride ionic liquid: Effect of temperature, applied Voltage, and cobalt chloride concentration on current efficiency and energy consumption.- METTOP-BRX Technology - Eliminating Concerns and Highlighting Potentials of the Concept of Tankhouse Optimization.- Mathematical Modeling of Molten Salt Electrolytic Cells for Sodium and Lithium Production.- Part 3: Hydrometallurgy.- P-CAC, A Unique Separation Technology for PGM Recovery.- The Physical Characteristics of Electrorefined Copper Starter Sheet Material.- Extraction of Copper from Sulfate-Chloride Solutions by Using Hydroxyoxime Extractants.- Hydrometallurgical Processes for the Recovery of Rare Earths, Nickel and Cobalt in Chloride Medium.- A Cr6+-Free Extraction of Chromium Oxide from Chromite Ores using Carbothermic Reduction in the Presence of Alkali.- Part 4: Pyrometallurgy I.- Market Dynamics, Recycling and Recovery of Magnesium and Its Alloy from Scrap.- Alternative ways of Using Nonferrous Slags as Feed Material in the Ferrous Production Industry.- Insulating or Conductive Refractory Lining Designs for Electric Furnace Smelting?.- The influence of phosphorous additions on phase evolution in molten coal slag.- The Recovery of Copper From Smelting Slag by Flotation Process.- Reaction Mechanisms in the Silicothermic Production of Magnesium.- Influences of CaO\/SiO2\/MgO\/Al2O3 on the Formation Behavior of FeO-bearing Primary-slags in Blast Furnace.- Desulfurization of high sulfur coal leached with H2O2 and NaOH by microwave irradiation.- Part 5: Pyrometallurgy II.- Chloridizing Roasting of Bismuthinite with Sodium Chloride-Oxygen.- Natural Gas Utilization in Blast Furnace Ironmaking: Tuy\u00e8re Injection, Shaft Injection and Prereduction.- Selective Sulfation Roasting of Rare Earths from NdFeB Magnet Scrap.- Gold solubility in smelting slags for the recycling of industrial and mining wastes.- Solid State Reduction Behavior of Iron, Chromium and Manganese Oxide Ores with Methane.- Stibnite chloridizing with calcium chloride-oxygen at roasting temperatures.- Investigations on Rotary Tool Near-dry Electric Discharge Machining.- Dependence of Ti2O3 and Temperatures on Electrical Conductivity of TiO2-FeO-Ti2O3 slags.- Part 6: Materials Processing and Plasma Processing.- PTA Cladding for Wear Application.- Production of SiMn-alloys by natural gas and Carbon black.- Effect of Flux Ratio on the Products of Self Propagating High Temperature Synthesis-Casting in WO3-Si-Al System.- Synthesis of Chrysin Based Cationic Lipids: Plasmid Delivery and Transgene Expression.- Part 7: Energy Storage and Engineering Issues.- Corrosion Mechanism of Haynes 230 with Ni Crucible in MgCl2-KCl.- Conceptualization of doped Black P thin films for potential use in photovoltaics with validation from first principle calculations.- Energy Efficiency and Sustainability in Steel Production.- Application of Surface Effect on Metallurgical Processes.- Part 8: Modeling and Simulation.- Metal Silicides for High-Temperature Thermoelectric Application.- CFD Modeling of Slag-Metal Reactions and Sulfur Refining Evolution in an Argon Gas-Stirred Lad","merchants_number":2,"ean":9783319510903,"category_id":103,"size":null,"min_price":177,"low_price_merchant_id":27291482,"ID":4882808,"merchants":["weltbild","euniverse"],"brand":"undefined","slug":"applications-of-process-engineering-principles-in-materials-processing-energy-and-environmental-technologies","url":"\/unterhaltung\/produkt\/applications-of-process-engineering-principles-in-materials-processing-energy-and-environmental-technologies\/","low_price_merchant_name":"Weltbild"}
undefined
Rare Metal Technology 2017
Part 1: Rare Earth Elements I.- The Economics of the Search Minerals Direct Extraction Process for Rare Earth Recovery.- Recovery of Critical Rare ...
undefined
Physik, Warum ist der Himmel so blau?
Warum... ... ist der Himmel blau? ... haften Saugnäpfe? ... quietscht Kreide auf der Tafel? ... soll man kein Metall in die Mikrowelle stellen? ......
undefined
Introduction to Materials for Advanced Ene...
Preface 1 Materials based solutions to advanced energy systems Abstract1.1 Advanced energy technology and contemporary issues 1.1.1 ...
undefined
Unterwegs
Bekannt wurde der französische Schriftsteller Joris-Karl Huysmans (1848-1907) in Deutschland vor allem durch seine Romane 'À rebours' ('Gegen den S...
undefined
Applications of Process Engineering Princi...
Part 1: Plenary Session.- Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies-Contributio...