heat protection gefunden in Unterhaltung
✖
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste
Produkt merken
zur Merkliste



CHF 48.65
Aerogel Nanoparticle Coated Turnout Gear:
The book discusses an exceptional use of an extraordinary material in a new field. While the era of nano technology is knocking our door, novel materials like aerogel are emerging. Aerogel is called as space age material. The book shows the use of aerogel nano particles in firefighter's protective clothing. Aerogel is a flame proof, extremely light weighted and lowest density solid on... zur Produkt-Seite
4442654 {"price-changing":null,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTYyOTk5NDMzX25wbEVELXBuZw==!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTYyOTk5NDMzX25wbEVELXBuZw==","post_title":"Aerogel Nanoparticle Coated Turnout Gear:","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=22944159777&a=401125&m=11816&pref1=9783659207686","labels":[],"brand_id":1,"post_content":"The book discusses an exceptional use of an extraordinary material in a new field. While the era of nano technology is knocking our door, novel materials like aerogel are emerging. Aerogel is called as space age material. The book shows the use of aerogel nano particles in firefighter's protective clothing. Aerogel is a flame proof, extremely light weighted and lowest density solid on earth that can provide impressive thermal insulation. NASA uses aerogel to develop equipment and space suit which requires protection against extreme cold. Aerogel research has been carried out for insulation against cold in space, architecture and apparel. However the book has revealed the use of super insulation property of aerogel against heat in firefighter's protective clothing. Thermal-physical comfort of a firefighter seriously hampers due to internal heat which develops from their bodies as a result of movement with loads of equipment, if their protective clothing does not allow the release of body temperature and sweat. The book investigates the thermophysiological comfort of aerogel coated turnout gear fabric by analyzing air, heat flux and moisture transportation properties.","merchants_number":1,"ean":9783659207686,"category_id":103,"size":null,"min_price":48.64999999999999857891452847979962825775146484375,"low_price_merchant_id":1087639,"ID":4442654,"merchants":["dodax"],"brand":"undefined","slug":"aerogel-nanoparticle-coated-turnout-gear","url":"\/unterhaltung\/produkt\/aerogel-nanoparticle-coated-turnout-gear\/","low_price_merchant_name":null}


CHF 47.40
Mathematical Modeling of Structured Reactors
A Challenging application for monolithic reactors that has attracted much consideration in the mid and late 90''s Is the development of high-temperature catalytic combustion for heat and power generation. This technology has the potential to be an alternative to ordinary flame combustion to convert chemical energy into heat or mechanical power with a minimum level of emissions from co... zur Produkt-Seite
4757042 {"price-changing":null,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTI4MjI1ODk2X3YyeUd3LXBuZw==!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTI4MjI1ODk2X3YyeUd3LXBuZw==","post_title":"Mathematical Modeling of Structured Reactors","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=24465052967&a=401125&m=11816&pref1=9783639165036","labels":[],"brand_id":1,"post_content":"A Challenging application for monolithic reactors that has attracted much consideration in the mid and late 90''s Is the development of high-temperature catalytic combustion for heat and power generation. This technology has the potential to be an alternative to ordinary flame combustion to convert chemical energy into heat or mechanical power with a minimum level of emissions from combustion by- products. In order to meet legislation requirements for environmental protection, continuous improvements of the catalytic reactors are necessary. Development work in these areas is increasingly supported by theoretical studies in form of mathematical modeling. This tool is indispensable in order to fully appreciate the complex interactions of physical and chemical phenomena affecting the behavior of catalytic reactors. Mathematical modeling is not only commonly used to improve design and optimize catalytic reactors on industrial scale, but is also fruitfully used to provide qualitative guidelines in the initial development of catalysts and experimental designs","merchants_number":1,"ean":9783639165036,"category_id":103,"size":null,"min_price":47.39999999999999857891452847979962825775146484375,"low_price_merchant_id":1087639,"ID":4757042,"merchants":["dodax"],"brand":"undefined","slug":"mathematical-modeling-of-structured-reactors","url":"\/unterhaltung\/produkt\/mathematical-modeling-of-structured-reactors\/","low_price_merchant_name":null}


CHF 48.65
Friction Resistant Composite Materials
With the development of cars, tractors, railway vehicles, and with growing requirements on speed, performance and reliability, the demands on development of high temperature resistant friction materials are increasing, which could satisfy the high safety requirements and environment protection. This contribution concerns the development of new metal-ceramic friction materials. Metal-c... zur Produkt-Seite
4440614 {"price-changing":null,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTYyOTc5NTU5XzNEWG14LXBuZw==!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTYyOTc5NTU5XzNEWG14LXBuZw==","post_title":"Friction Resistant Composite Materials","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=22944289733&a=401125&m=11816&pref1=9783659269943","labels":[],"brand_id":1,"post_content":"With the development of cars, tractors, railway vehicles, and with growing requirements on speed, performance and reliability, the demands on development of high temperature resistant friction materials are increasing, which could satisfy the high safety requirements and environment protection. This contribution concerns the development of new metal-ceramic friction materials. Metal-ceramic friction composites are multi-component materials, beside basic metal matrix (bronze) they contain slide additives (graphite) and friction additives (SiO2-SiC). Many applications of such alloy P\/M parts are based on these characteristics such as controlled porosity and friction applications(brakes and clutches)applied in automotive industry. The most problems which cause road accidents occur because of brake systems. For this reason metallic brakes are important automotive parts. The advantages of metallic brakes are absorbing more energy under high speed, more wear resistance, high heat conductivity which helps in heat dissipation and stable friction coefficient. This book, therefore, explains the corrosive wear of bronze friction resistant composites prepared by powder metallurgy technique.","merchants_number":1,"ean":9783659269943,"category_id":103,"size":null,"min_price":48.64999999999999857891452847979962825775146484375,"low_price_merchant_id":1087639,"ID":4440614,"merchants":["dodax"],"brand":"undefined","slug":"friction-resistant-composite-materials","url":"\/unterhaltung\/produkt\/friction-resistant-composite-materials\/","low_price_merchant_name":null}


CHF 32.55
Space Shuttle Columbia Disaster
High Quality Content by WIKIPEDIA articles! The Space Shuttle Columbia disaster occurred on February 1, 2003, when the Space Shuttle Columbia disintegrated over Texas during re-entry into the Earth's atmosphere, with the loss of all seven crew members, shortly before it was scheduled to conclude its 28th mission, STS-107. The loss of Columbia was a result of damage sustained during la... zur Produkt-Seite
4745960 {"price-changing":null,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTI4MjA1MTA1X1h2N1h5LXBuZw==!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTI4MjA1MTA1X1h2N1h5LXBuZw==","post_title":"Space Shuttle Columbia Disaster","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=24447005275&a=401125&m=11816&pref1=9786130304805","labels":[],"brand_id":1,"post_content":"High Quality Content by WIKIPEDIA articles! The Space Shuttle Columbia disaster occurred on February 1, 2003, when the Space Shuttle Columbia disintegrated over Texas during re-entry into the Earth's atmosphere, with the loss of all seven crew members, shortly before it was scheduled to conclude its 28th mission, STS-107. The loss of Columbia was a result of damage sustained during launch when a piece of foam insulation the size of a small briefcase broke off the Space Shuttle external tank (the main propellant tank) under the aerodynamic forces of launch. The debris struck the leading edge of the left wing, damaging the Shuttle's thermal protection system (TPS), which protects it from heat generated with the atmosphere during re-entry. While Columbia was still in orbit, some engineers suspected damage, but NASA managers limited the investigation, on the grounds that little could be done even if problems were found.","merchants_number":1,"ean":9786130304805,"category_id":103,"size":null,"min_price":32.5499999999999971578290569595992565155029296875,"low_price_merchant_id":1087639,"ID":4745960,"merchants":["dodax"],"brand":"undefined","slug":"space-shuttle-columbia-disaster","url":"\/unterhaltung\/produkt\/space-shuttle-columbia-disaster\/","low_price_merchant_name":null}


CHF 28.80
Novec 1230
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Novec 1230, C6F12O, (3M Novec 1230) fluid is an environmentally friendly Halon replacement for use as a gaseous fire suppression agent. Novec 1230 is manufactured by 3M. It is generally used in situations where water from a fire sprinkler would damage expensi... zur Produkt-Seite
5177396 {"price-changing":null,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTI4MjE1MDIyX0VEbmJwLXBuZw==!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTI4MjE1MDIyX0VEbmJwLXBuZw==","post_title":"Novec 1230","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=24447616175&a=401125&m=11816&pref1=9786131026737","labels":[],"brand_id":1,"post_content":"Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Novec 1230, C6F12O, (3M Novec 1230) fluid is an environmentally friendly Halon replacement for use as a gaseous fire suppression agent. Novec 1230 is manufactured by 3M. It is generally used in situations where water from a fire sprinkler would damage expensive equipment or where water-based fire protection is impractical, such as museums, banks, clean rooms and hospitals. 3M Novec 1230 fluid does not deplete ozone (ODP 0) and has an atmospheric lifetime of 5 days and a GWP of 1. Novec 1230 fluid is a high molecular weight material, compared with the first generation halocarbon clean agents. The product has a heat of vaporization of 88.1 kJ\/kga and low vapor pressure. Although it is a liquid at room temperature it gasifies immediately after being discharged in a total flooding system.","merchants_number":1,"ean":9786131026737,"category_id":103,"size":null,"min_price":28.800000000000000710542735760100185871124267578125,"low_price_merchant_id":1087639,"ID":5177396,"merchants":["dodax"],"brand":"undefined","slug":"novec-1230","url":"\/unterhaltung\/produkt\/novec-1230\/","low_price_merchant_name":null}


CHF 40.60
Tarantula
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Scientific researchers have recently discovered 9 new species of tarantulas in central and eastern parts of Brazil. The scientists have advanced that the tree-dwelling tarantulas are very colourful and attractive in appearance. The researchers have also added... zur Produkt-Seite
5504168 {"price-changing":null,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTI4MTg1NTA3X3hPQVhXLXBuZw==!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTI4MTg1NTA3X3hPQVhXLXBuZw==","post_title":"Tarantula","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=24487285413&a=401125&m=11816&pref1=9786130144418","labels":[],"brand_id":1,"post_content":"Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Scientific researchers have recently discovered 9 new species of tarantulas in central and eastern parts of Brazil. The scientists have advanced that the tree-dwelling tarantulas are very colourful and attractive in appearance. The researchers have also added that the detection of these new creatures have brought the total number of tarantula species up to 16. In-depth research have shown that there is only 1 among the 16 species which is quite different from the others since they reside only in the flowering plant namely bromeliads. Scientific experts have brought up evidence showing that the bromeliads provide water and protection against the scorching heat of the sun to the tarantulas. For those who are scared of tarantulas, it is essential to note that those creatures rarely bite. Nonetheless, scientific experts have warned that all tarantulas are venomous. Medical reports have registered that tarantulas venom can trigger human fatalities and extreme discomfort throughout days and months...","merchants_number":1,"ean":9786130144418,"category_id":103,"size":null,"min_price":40.60000000000000142108547152020037174224853515625,"low_price_merchant_id":1087639,"ID":5504168,"merchants":["dodax"],"brand":"undefined","slug":"tarantula-1","url":"\/unterhaltung\/produkt\/tarantula-1\/","low_price_merchant_name":null}


CHF 55.80
MINIMUM QUANTITY LUBRICATION GRINDING USING NANOFLUIDS
Grinding is widely used in the manufacture of components requiring fine tolerances and smooth finishes, however, it is recognized as one of the most environmentally unfriendly manufacturing processes. Large amount of cutting fluids are used in grinding for a variety of reasons such as improving wheel life, reducing workpiece thermal damage and improving surface finish. Government regu... zur Produkt-Seite
4755806 {"price-changing":null,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTI4MTc4NzQ4X0c3REQzLXBuZw==!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTI4MTc4NzQ4X0c3REQzLXBuZw==","post_title":"MINIMUM QUANTITY LUBRICATION GRINDING USING NANOFLUIDS","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=24487235905&a=401125&m=11816&pref1=9783639153460","labels":[],"brand_id":1,"post_content":"Grinding is widely used in the manufacture of components requiring fine tolerances and smooth finishes, however, it is recognized as one of the most environmentally unfriendly manufacturing processes. Large amount of cutting fluids are used in grinding for a variety of reasons such as improving wheel life, reducing workpiece thermal damage and improving surface finish. Government regulation, environmental protection, public awareness, and the need for cost reduction have all promoted the development of new environmentally conscious grinding processes.Therefore, the author proposed Minimum Quantity Lubrication (MQL) grinding in this book by focusing on the cutting fluids, grinding wheels, and thermal management. Nanofluids, a new class of fluids engineered by dispersing nanometer-size solid particles in base fluids to increase heat transfer and tribological properties, were studied as potential cutting fluids. The insufficient cooling problem of MQL grinding can be improved by using vitrified bond CBN wheels. A grinding thermal model based on the finite difference method has also been developed to investigate the thermal aspects in the grinding process.","merchants_number":1,"ean":9783639153460,"category_id":103,"size":null,"min_price":55.7999999999999971578290569595992565155029296875,"low_price_merchant_id":1087639,"ID":4755806,"merchants":["dodax"],"brand":"undefined","slug":"minimum-quantity-lubrication-grinding-using-nanofluids","url":"\/unterhaltung\/produkt\/minimum-quantity-lubrication-grinding-using-nanofluids\/","low_price_merchant_name":null}


CHF 28.80
Armor-piercing shot and shell
High Quality Content by WIKIPEDIA articles! An armor-piercing shell is a type of ammunition designed to penetrate armor. From the 1860s to 1950s, a major application of armor-piercing projectiles was to defeat the thick armor carried on many warships. From the 1920s onwards, armor-piercing weapons were required for anti-tank missions. An armor-piercing shell must withstand the shock o... zur Produkt-Seite
5120444 {"price-changing":null,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTI4MDk4MDQzXzJMN3FELXBuZw==!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTI4MDk4MDQzXzJMN3FELXBuZw==","post_title":"Armor-piercing shot and shell","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=24446983895&a=401125&m=11816&pref1=9786130254995","labels":[],"brand_id":1,"post_content":"High Quality Content by WIKIPEDIA articles! An armor-piercing shell is a type of ammunition designed to penetrate armor. From the 1860s to 1950s, a major application of armor-piercing projectiles was to defeat the thick armor carried on many warships. From the 1920s onwards, armor-piercing weapons were required for anti-tank missions. An armor-piercing shell must withstand the shock of punching through armor plating. Shells designed for this purpose have a greatly strengthened case with a specially hardened and shaped nose, and a much smaller bursting charge. Some smaller-caliber AP shells have an inert filling, or incendiary charge in place of the HE bursting charge. The AP shell is now little used in naval warfare, as modern warships have little or no armor protection, but it remains the preferred round in tank warfare, as it has a greater \"first-hit kill\" probability than a high explosive anti-tank round, especially against a target with composite armor, and because of higher muzzle velocity, is also more accurate than a HEAT round. Armor-piercing cartridges are also available as small arms ammunition, primarily for use as an anti-mat\u00e9riel round.","merchants_number":1,"ean":9786130254995,"category_id":103,"size":null,"min_price":28.800000000000000710542735760100185871124267578125,"low_price_merchant_id":1087639,"ID":5120444,"merchants":["dodax"],"brand":"undefined","slug":"armor-piercing-shot-and-shell","url":"\/unterhaltung\/produkt\/armor-piercing-shot-and-shell\/","low_price_merchant_name":null}


CHF 47.15
Fire Hazard Assessment of Lithium Ion Battery Energy Storage Systems
Providing a concise overview of lithium-ion (Li-ion) battery energy storage systems (ESSs), this book also presents the full-scale fire testing of 100 kilowatt hour (kWh) Li-ion battery ESSs. It details a full-scale fire testing plan to perform an assessment of Li-ion battery ESS fire hazards, developed after a thorough technical study. It documents the results of the testing plan inc... zur Produkt-Seite
4420286 {"price-changing":0.035787321063394682274516611641956842504441738128662109375,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTIwNTEzNTMyX0J3TWRENC1wbmc=!aHR0cHM6Ly9jNC1zdGF0aWMuZG9kYXguY29tL3YyLzE4MC0xODAtMTIwNTEzNTMyX0J3TWRENC1wbmd8fnxodHRwczovL29zMS5tZWluZWNsb3VkLmlvL2IxMDE1OC9tZWRpYS9pbWFnZS8zZS9hNy80OS81ODQ1MzU1NjAwMDAxQV82MDB4NjAwLmpwZw==","post_title":"Fire Hazard Assessment of Lithium Ion Battery Energy Storage Systems","deeplink":"https:\/\/www.awin1.com\/pclick.php?p=22948337677&a=401125&m=11816&pref1=9781493965557","labels":[],"brand_id":1,"post_content":"Providing a concise overview of lithium-ion (Li-ion) battery energy storage systems (ESSs), this book also presents the full-scale fire testing of 100 kilowatt hour (kWh) Li-ion battery ESSs. It details a full-scale fire testing plan to perform an assessment of Li-ion battery ESS fire hazards, developed after a thorough technical study. It documents the results of the testing plan including external and internal ignition testing, ESS positioning, temperature and heat flux measurements, pressure measurement, weather meters, and data acquisition systems.A comprehensive literature review and gap analysis reveal the current state of research into this vital aspect of energy storage. The authors cover the characteristics and hazards of Li-ion batteries, their anatomy and design, commercial and residential ESSs, historical fire incidents, and ESS codes and regulations.Researchers and professionals working in fire protection engineering, battery systems engineering, or energy storage will find this book a useful example of a fire testing plan. The results of the hazard assessment offer insights for those involved in electrical, fire, and building codes, as well as practitioners in design standards and fire testing.","merchants_number":2,"ean":9781493965557,"category_id":103,"size":null,"min_price":47.14999999999999857891452847979962825775146484375,"low_price_merchant_id":1087639,"ID":4420286,"merchants":["dodax","euniverse"],"brand":"undefined","slug":"fire-hazard-assessment-of-lithium-ion-battery-energy-storage-systems","url":"\/unterhaltung\/produkt\/fire-hazard-assessment-of-lithium-ion-battery-energy-storage-systems\/","low_price_merchant_name":null}



CHF 168.00
Vaccines for Invasive Fungal Infections
Part I: Discovery and Testing of Vaccine Candidates 1. Mouse Immunization with Radioattenuated Yeast Cells of Paracoccidioides brasiliensis Estefânia Mara do Nascimento Martins and Antero Silva Ribeiro de Andrade 2. Heat-Killed Yeast as a Pan-Fungal Vaccine Marife Martinez, Karl V. Clemons, and David A. Stevens 3. Immunoinformatics as a Tool for New Antifungal Va... zur Produkt-Seite
4908779 {"price-changing":0,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvNTIvYzkvNDgvNjQ4OTQzNzgwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvNTIvYzkvNDgvNjQ4OTQzNzgwMDAwMUFfNjAweDYwMC5qcGd8fnxodHRwczovL2kud2VsdGJpbGQuZGUvcC92YWNjaW5lcy1mb3ItaW52YXNpdmUtZnVuZ2FsLWluZmVjdGlvbnMtMjczNTQ1ODUzLmpwZw==","post_title":"Vaccines for Invasive Fungal Infections","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9781493971039&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Fmedizin-pharmazie%2F377968%2Fvaccines-for-invasive-fungal-infections-methods-and-protocols%3FsPartner%3Dtoppreise","labels":[],"brand_id":1,"post_content":"Part I: Discovery and Testing of Vaccine Candidates\u00a01. Mouse Immunization with Radioattenuated Yeast Cells of Paracoccidioides brasiliensis\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Estef\u00e2nia Mara do Nascimento Martins and Antero Silva Ribeiro de Andrade\u00a02. Heat-Killed Yeast as a Pan-Fungal Vaccine\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Marife Martinez, Karl V. Clemons, and David A. Stevens\u00a03. Immunoinformatics as a Tool for New Antifungal Vaccines\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Rupanjali Chaudhuri and Srinivasan Ramachandran\u00a04. Rational Design of T Lymphocyte Epitope-Based Vaccines Against Coccidioides Infection\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Brady J. Hurtgen and Chiung-Yu Hung\u00a05. Identification of Fungal T Cell Epitopes by Mass Spectrometry-Based Proteomics\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Bernd Roschitzki and Salom\u00e9 LeibundGut-Landmann\u00a06. Intranasal Antifungal Vaccination Using DNA-Transfected Dendritic Cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Shanjana Awasthi\u00a07. DNAhsp65 Vaccine as Therapy Against Paracoccidioidomycosis\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Alice M. Ribeiro, Andr\u00e9 C. Amaral, Maria Sueli S. Felipe, and Anamelia L. Bocca\u00a08. Idiotypic Antifungal Vaccination: Immunoprotection by Antiidiotypic Antibiotic Antibodies\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Luciano Polonelli, Walter Magliani, and Stefania Conti\u00a09. Peptide Vaccine Against Paracoccidioidomycosis\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Carlos P. Taborda and Luiz R. Travassos\u00a010. Methodology for Anti-Cryptococcal Vaccine Development\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Ashok K. Chaturvedi and Floyd L. Wormley Jr.\u00a0Part II: Design and Delivery\u00a011. Beta-Glucan Particles as Vaccine Adjuvant Carriers\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Zeynep Mirza, Ernesto R. Soto, Fusun Dikengil, Stuart M. Levitz, and Gary R. Ostroff\u00a012. Th1-Inducing Agents in Prophylaxis and Therapy for Paracoccidioidomycosis\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Thiago Aparecido da Silva, Fabr\u00edcio Freitas Fernandes, Taise Natali Landgraf, Adem\u00edlson Panunto-Castelo, and Maria Cristina Roque-Barreira\u00a013. Nanoparticle-Based Mycosis Vaccine\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Swaleha Zubair, Asim Azhar, Nazoora Khan, Ejaj Ahmad, Mohd Ajmal, and Owais Mohammad\u00a014. Yeast Expressing Gp43 Protein as a Vaccine Against Paracoccidioides brasiliensis Infection\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Aline Ferreira Oliveira and Paulo S.R. Coelho\u00a015. Vaccination with Phage-Displayed Antigenic Epitope\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Yicun Wang and Li Wang\u00a016. Preparation of an Oral Vaccine by Proteome Analysis and Molecular Display Technology\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Seiji Shibasaki and Mitsuyoshi Ueda\u00a0Part III: Endpoint Assessment\u00a017. Precise and Efficient In-Frame Integration of an Exogenous GFP Tag in Aspergillus fumigatus by a CRISPR System\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Chi Zhang and Ling Lu\u00a018. Endpoint Assessment in Rabbit Models of Invasive Pulmonary Aspergillosis and Mucormycosis\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Vidmantas Petraitis, Ruta Petraitiene, William Hope, and Thomas J. Walsh\u00a0Part IV: Mechanism of Vaccine Protection\u00a019. CD4+ T Cells Mediate Aspergillosis Vaccine Protection\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Diana Diaz-Arevalo and Markus Kalkum\u00a020. T-Cell-Mediated Cross-Protective Immunity\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Nina Khanna and Claudia Stuehler\u00a021. Assessment of Post-Vaccination Phagocytic Activation Using Candida albicans Killing Assays\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Wenqing Li and Yan Hu\u00a022. Immunization with Antigen-Pulsed Dendritic Cells Against Highly Virulent Cryptococcus gattii Infection: Analysis of Cytokine-Producing T Cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Keigo Ueno, Makoto Urai, Shogo Takatsuka, Masahiro Abe, Yoshitsugu Miyazaki, and Yuki Kinjo\u00a0Part V: Translation to Clinical Use\u00a023. Testing Antifungal Vaccines in an Animal Model of Invasive Candidiasis and in Human Mucosal Candidiasis\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Esther Segal","merchants_number":2,"ean":9781493971039,"category_id":103,"size":null,"min_price":168,"low_price_merchant_id":70255345,"ID":4908779,"merchants":["euniverse","weltbild"],"brand":"undefined","slug":"vaccines-for-invasive-fungal-infections","url":"\/unterhaltung\/produkt\/vaccines-for-invasive-fungal-infections\/","low_price_merchant_name":"eUniverse"}



CHF 143.00
Introduction to Materials for Advanced Energy Systems
Preface 1 Materials based solutions to advanced energy systems Abstract1.1 Advanced energy technology and contemporary issues 1.1.1 Challenges and concerns 1.1.2 The role of the advanced materials1.1.3 Solutions for future energy systems 1.2 Fundamentals of energy systems1.2.1 Energy and service1.2.2 Energy process characterization1.2.2.1... zur Produkt-Seite
4749383 {"price-changing":0.090722856306701793460689486892079003155231475830078125,"image":"https:\/\/image.vergleiche.ch\/small\/aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvODIvMTUvNTcvNzEzOTgxNDUwMDAwMUFfNjAweDYwMC5qcGc=!aHR0cHM6Ly9vczEubWVpbmVjbG91ZC5pby9iMTAxNTgvbWVkaWEvaW1hZ2UvODIvMTUvNTcvNzEzOTgxNDUwMDAwMUFfNjAweDYwMC5qcGd8fnxodHRwczovL2M0LXN0YXRpYy5kb2RheC5jb20vdjIvMTgwLTE4MC0xMjA4MTI0ODRfQXcyTTIyLXBuZw==","post_title":"Introduction to Materials for Advanced Energy Systems","deeplink":"https:\/\/cct.connects.ch\/tc.php?t=116298C1969900829T&subid=9783319980010&deepurl=https%3A%2F%2Feuniverse.ch%2Fbuecher%2Fmathematik-naturwissenschaft-technik%2Ftechnik%2F477940%2Fintroduction-to-materials-for-advanced-energy-systems%3FsPartner%3Dtoppreise","labels":[],"brand_id":1,"post_content":"Preface 1 Materials based solutions to advanced energy systems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Abstract1.1\u00a0 Advanced energy technology and contemporary issues 1.1.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Challenges and concerns 1.1.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 The role of the advanced materials1.1.3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Solutions for future energy systems 1.2\u00a0 Fundamentals of energy systems1.2.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Energy and service1.2.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Energy process characterization1.2.2.1\u00a0 The laws of thermodynamics 1.2.2.2\u00a0 Macroscopic and microscopic energy systems1.2.2.3\u00a0 Entropy and enthalpy1.2.2.4\u00a0 Chemical kinetics1.2.2.5\u00a0 Energy availability\u00a01.2.3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Energy calculations and accounting1.2.3.1\u00a0 Energy efficiency1.2.3.2\u00a0 Heating values1.2.4\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 General energy devices1.2.4.1\u00a0 Conversion devices1.2.4.2\u00a0 Energy storage1.2.4.3\u00a0 Systems engineering1.2.4.4\u00a0 Electricity1.2.5\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Sustainable energy1.3\u00a0 Materials development for advanced energy systems1.3.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Functional surface technologies1.3.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Materials integration in sustainable energy systems1.3.3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Higher-performance materials1.3.4\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Sustainable manufacturing of materials1.3.5\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Materials and process development acceleration tools\u00a0\u00a0\u00a0 1.4\u00a0 Summary \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises2 Fundamentals of materials used in energy systems\u00a0\u00a0 Abstract2.1 Structures of solids2.1.1 Atomic structures2.1.2 Crystal structures2.1.2.1 Structures for elements2.1.2.2 Structures for compounds2.1.2.3 Solid solutions2.1.3 Crystal diffraction2.1.3.1 Phase difference and Bragg's law2.1.3.2 Scattering2.1.3.3 Reciprocal space2.1.3.4 Wave vector representation2.1.4 Defects in solids2.1.4.1 Point defects2.1.4.2 Line defects2.1.4.2.1 Edge dislocations2.1.4.2.2 Screw dislocations2.1.4.2.3 Burger's vector and burger circuit2.1.4.2.4 Dislocation motion2.1.4.3 Planar defects2.1.4.3.1 Grain boundaries2.1.4.3.2 Twin boundaries2.1.4.4 Three-dimensional defects2.1.5 Diffusion in solids2.1.5.1 Atomic theory 2.1.5.2 Random walk2.1.5.3 Other mass transport mechanisms2.1.5.3.1 Permeability versus diffusion2.1.5.3.2 Convection versus diffusion2.1.5.4 Mathematics of diffusion2.1.5.4.1 Steady state diffusion2.1.5.4.2 Non-steady state diffusion2.1.6 Electronic structure of solids2.1.6.1 Waves and electrons2.1.6.1.2 Representation of waves 2.1.6.1.2 Matter waves 2.1.6.1.3 Superposition \u00a02.1.6.1.4 Electron waves 2.1.6.2 Quantum mechanics 2.1.6.3 Electron energy band representations 2.1.6.4 Real energy band structures 2.1.6.5 Other aspects of electron energy band structure 2.2 Phase equilibria2.2.1 The Gibbs phase rule2.2.1.1 The phase rule on equilibrium among phases2.2.1.2 Applications of the phase rule2.2.1.3 Construction of phase diagrams2.2.1.4 The tie line principle2.2.1.5 The lever rule 2.2.2 Nucleation and growth of phases2.2.2.1 Thermodynamics of phase transformations2.2.2.2 Nucleation2.3 Mechanical properties2.3.1 Elasticity relationships2.3.1.1 Ture versus engineering strain2.3.1.2 Nature of elasticity and Young's Modulus2.3.1.3 Hook's law2.3.1.4 Poisson's ratio2.3.1.5 Normal forces2.3.2 Plasticity observations2.3.3 Role of dislocation in deformation of crystalline materials2.3.4 Deformation of noncrystalline materials 2.3.4.1 Thermal behavior of amorphous solids 2.3.4.2 Time-dependent deformation of amorphous materials 2.3.4.3 Models for network2.3.4.4 Elastomers2.4 Electronic properties of materials2.4.1 Occupation of electronic states 2.4.1.1 Density of states function2.4.1.2 The Fermi-Dirac distribution function 2.4.1.3 Occupancy of electronic states 2.4.2 Position of the Fermi energy 2.4.3 Electronic properties of metals2.4.3.1 Free electron theory for electrical conduction 2.4.3.2 Quantum theory of electronic conduction 2.4.3.3 Superconductivity 2.4.4 Semiconductors 2.4.4.1 Intrinsic semiconductors 2.4.4.2 Extrinsic semiconductors 2.4.4.3 Semiconductor measurements 2.4.5 Electrical behavior of organic materials 2.4.6 Junctions and devices and the nanoscale2.4.6.1 Junctions 2.4.6.1.1 Metal-metal junctions 2.4.6.1.2 Metal-semiconductor junctions 2.4.6.1.3 Semiconductor-semiconductor PN junctions 2.4.6.2 Selected devices 2.4.6.2.1 Passive devices 2.4.6.2.2 Active devices 2.4.6.3 Nanostructures and nanodevices 2.4.6.3.1 Heterojunction nanostructures 2.4.6.3.2 2-D and 3-D nanostructures 2.5 Computational modeling of materials2.5.1 The challenge of complexity2.5.2 Materials design with predictive capability2.5.3 Materials modeling approaches2.6 Advanced experimental techniques for materials characterization2.6.1 Dynamic mechanical spectroscopy2.6.2 Nanoindentation2.6.3 Light microscopy2.6.4 Electron microscopy2.6.5 Atom probe tomography2.6.6 Advanced X-ray characterization2.6.7 Neutron scattering2.7 Integrated materials process control 2.7.1 Process control and its constituents2.7.1.1 Sensing techniques2.7.1.2 Input parameters for combustion control2.7.2 Diagnostic techniques2.3.2.1 Optical diagnostics2.3.2.2 Solid-state sensors2.8 Summary\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises 3 Advanced materials enable energy production from fossil fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0Abstract\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.1 Materials technology status and challenges in fossil energy systems3.1.1 Boilers3.1.2 Steam turbines3.1.3 Gas turbines3.1.4 Gasifiers3.1.5 CO2 capture and storage3.1.6 Perspectives 3.2 Materials for ultra-supercritical applications 3.2.1 High temperature alloys\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.2.2 Advanced refractory materials for slagging gasifiers\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.2.3 Breakthrough materials \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.3 Coatings and protection materials for steam system3.3.1 High temperature and high pressure coatings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.3.2 Oxygen ion selective ceramic membranes for carbon capture\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.4 Materials for deep oil and gas well drilling and construction\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.4.1 High stress and corrosion resistant propping agents\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.4.2 Erosion- and corrosion-resistant coatings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a03.4.3 Wear resistant coatings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.4.4 High strength and corrosion resistant alloys for use in well \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 casings and deep well drill pipe\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 3.5 Materials for sensing in harsh environments\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 References\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises4\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Materials-based solutions to solar energy system\u00a0\u00a0 Abstract4.1\u00a0 Solar energy technologies4.1.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Photovoltaic technologies4.1.1.1\u00a0 Residential photovoltaic4.1.1.2\u00a0 Utility-scale flat-plate thin film photovoltaic4.1.1.3\u00a0 Utility-scale photovoltaic concentrators4.1.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Solar thermal technologies4.1.2.1\u00a0 Unglazed collectors4.1.2.2\u00a0 Glazed collectors4.1.2.3\u00a0 Parabolic trough4.1.2.4\u00a0 Vacuum tube collectors4.1.2.5\u00a0 Linear Fresnel lens reflectors4.1.2.6 Solar Stirling engine4.2\u00a0 Photovoltaic materials and devices4.2.1\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Crystalline silicon PV cells4.2.1.1 Mono-crystal silicon PVs4.2.1.2\u00a0 Polycrystalline silicon PVs4.2.1.3 Emitter wrap-through cells4.2.2\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Thin-film PV cells4.2.2.1 Amorphous Silicon Cells4.2.2.1.1 Amorphous-Si, double or triple junctions4.2.2.1.2 Tandem amorphous-Si and multi-crystalline-Si4.2.2.2 Ultra-thin silicon wafers4.2.2.3 Cadmium telluride and cadmium sulphide4.2.2.4 Copper indium selenide and copper indium gallium selenide4.2.3\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Compound semiconductor PV cells4.2.3.1 Space PV cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a04.2.3.2 Light absorbing dyes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.3.3 Organic and polymer PV\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.3.4 Flexible plastic organic transparent cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4 Nanotechnology for PV cell fabrication\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.1 Silicon nanowires\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.2 Carbon nanotubes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.3 Graphene-based solar cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.4 Quantum dots\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.5 Hot carrier solar cell\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 4.2.4.6 Nanoscale surfaces reduce reflection and increase\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 capture of the full spectrum of sunlight4.2.5 Hybrid solar cells4.2.5.1 Hybrid organic-metal PVs 4.2.5.2 Hybrid organic-organic PVs 4.2.6 Inexpensive plastic solar cells or panels that are mounted on \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 curved surfaces4.3 Advanced materials for solar thermal collectors4.3.1 Desirable features of solar thermal collector materials4.3.1.1 Transparent cover4.3.1.2 Insulation4.3.1.3 Evacuated-tube collectors4.3.2 Polymer materials in solar thermal collectors4.3.3 Corrosion resistant materials in contact with molten salts4.4 Reflecting materials for solar cookers4.5 Optical materials for absorbers4.5.1 Metals4.5.2 Selective coatings4.5.2.1 Intrinsic absorption coatings4.5.2.2 Semiconductor-metal tandems4.5.2.3 Multilayer absorbers4.5.2.4 Metal-dielectric composite coatings4.5.2.5 Surface texturing4.5.2.6 Selectively solar-transmitting coating on a blackbody-like absorber4.5.3 Heat pipes4.5.4 Metamaterial solar absorbers4.5.4.1 Metal-dielectric nanocomposites with tailored plasmonic response 4.5.4.2 Light weight broadband nanocomposite perfect absorbers4.3.4.3 Prospects and future trends4.6 Thermal energy storage materials4.6.1 Sensible thermal energy storage4.6.2 Underground thermal energy storage4.6.3 Phase change materials4.6.4 Thermal energy storage via chemical reactions\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises5 Advanced materials enable renewable geothermal energy capture and generation\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Abstract\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 5.1 Geothermal technologies5.1.1 Geothermal resources for geothermal energy development5.1.2 Geothermal electricity5.1.3 Enhanced geothermal systems and other advanced geothermal technologies5.1.4 Direct use of geothermal energy5.2 Hard materials for downhole rock drilling5.3 Advanced cements for geothermal wells5.4 Geothermal heat pumps5.4.1 Pumping materials5.4.2 Pumping technology5.4.3 Heat pump applications5.5 Materials for transmission pipelines and distribution netorks5.6 Materials for heat exchange systems5.6.1 Heat exchange fluids5.6.2 Heat exchanger coatings5.6.3 Polymer heat exchangers5.6.4 Heat convector materials5.6.5 Refrigeration materials for cooling systems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 5.7 Corrosion protection and material selection for geothermal systems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises6 Advanced materials enable renewable wind energy capture and generation\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Abstract\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1 Wind resources\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.1 Wind quality\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.2 Variation of wind speed with elevation\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.3 Air density\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.4 Wind forecasting\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.5 Offshore wind\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.1.6 Maximum wind turbine efficiency: The Betz ratio6.2 Materials requirements of wind machinery and generating systems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1 Driven components\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1.1 Shafts\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1.2 Bearings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1.3 Couplings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.1.4 Gear boxes \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a06.2.1.5 Generators\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.2 Tower\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.2.1 Tower structure\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.2.2 Tower flange\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.2.3 Power electronics\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.3 Rotor \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.3.1 Blade \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a06.2.3.2 Blade extender\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.3.3 Hub\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.3.4 Pitch drive\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4 Nacelle \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.1 Case\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.2 Frame\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.3 Anemometer\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a06.2.4.4 Brakes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.5 Controller\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.6 Convertor\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.7 Cooling system\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.8 Sensors\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.4.9 Yaw drive\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.5 Balance-of-station subsystems\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.2.6 System design challenges6.3 Wind turbine types and structures6.3.1 Horizontal-axis wind turbines6.3.2 Vertical-axis wind turbines6.3.3 Upwind wind turbines and downwind wind turbines6.3.4 Darrieus turbines6.3.5 Savonius turbines6.3.6 Giant Multi-megawatt turbines6.4 General materials used in wind turbines\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.4.1 Cast iron and steel\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.4.2 Composite materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.4.3 Rare earth elements in magnet\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a06.4.4 Copper\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.4.5 Reinforced concrete6.5 Light weight composite materials for wind turbine blades\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.5.1 Reinforcement\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a06.5.2 Matrix\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 6.6 Smart and stealth wind turbine blade materials6.7 Permanent-magnet generators for wind turbine applications6.8 Future prospects\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises7 Advanced materials for ocean energy and hydropower7.1 Materials requirements for ocean energy technologies7.1.1 Tidal power7.1.2 Ocean current7.1.3 Wave energy7.1.4 Ocean thermal energy7.1.5 Salinity gradient7.2 Advanced materials and devices for ocean energy \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.1 Structure & prime mover\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.2 Foundations & moorings\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.3 Power take off\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.4 Control\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.5 Installation \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.6 Connection\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.2.7 Operations & maintenance7.3 Wave energy converters\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.3.1 Types of WEC7.4 Tidal energy converters\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.4.1. Types of TEC\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.4.2. Further Permutations7.5 Arrays7.6 Challenges faced by the ocean energy\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.1 Predictability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.2 Manufacturability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.3 Installability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.4 Operability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.5 Survivability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.6 Reliability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.6.7 Affordability7.7 Materials requirements for hydropower system\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0 7.7.1 Retaining structure materials for dams and dikes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 7.7.2 Structural materials and surface coatings for turbines runners, draft tubes \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 and penstocks\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises8 Biomass for bioenergy8.1 Materials requirements for biomass technologies\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.1.1 Biomass for power and heat\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.1.2 Biogas\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.1.3 Biofuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.1.4 Biorefineries8.2 Corrosion resistant materials for biofuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.2.1 Metal and its alloys\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.2.2 Elastomers8.3 Nanocatalysts for conversion of biomass to biofuel\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.3.1 Nanocatalysts for biomass gasification\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.3.2 Nanocatalysts for biomass liquefaction\u00a0 8.4 Coal-to-liquid fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.4.1 Basic chemistry\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 8.4.2 CTL technology options8.5 Materials for combustion processes8.6 Materials for capturing CO2 for using as a nutrient to cultivate alga8.7 Materials for water filtration and desalinationReferenceExercises9 Hydrogen and fuel cells9.1 Introduction9.2 Hydrogen generation technology\u00a09.2.1 Steam methane reforming\u00a09.2.2 Electrolysis9.3 Hydrogen conversion and storage technology\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.1 Fuel cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.2 Hydrogen gas turbines\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.3 Compressed hydrogen gas\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.4 Liquid hydrogen storage in tanks\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.3.5 Physisorption of hydrogen and its storage in solid structures9.4 Materials-based hydrogen storage \u00a09.4.1 Nanoconfined hydrogen storage materials\u00a09.4.2 Complex hydrides\u00a09.4.3 Reversible hydrides\u00a09.4.4 Hydrogen storage in carbonaceous materials \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a09.4.5 Hydrogen storage in zeolites and glass microspheres \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a09.4.6 Hydrogen storage in organic frameworks \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.4.7 Hydrogen Storage in Polymers 9.4.8 Hydrogen storage in formic acid9.5 Fuel cell materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.1 Anode Materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.2 Cathode Materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.3 Electrolytes\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.4 Catalysts (Catalysts for the oxygen reduction reaction)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.5 Sputtering Targets\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.6 Current Collectors (Higher-temperature proton conducting materials)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.5.7 Support Materials (Low-cost materials resistant to hydrogen-assisted \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 cracking and embrittlement)9.6 Applications of fuel cells9.6.1 Alkaline Fuel Cells9.6.2 Proton Exchange Membrane Fuel Cells \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.6.3 Direct Methanol Fuel Cells 9.6.4 Phosphoric Acid Fuel Cells 9.6.5 Molten Carbonate Fuel Cells 9.6.6 Solid Oxide Fuel Cells \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.6.7 Solid oxide fuel cells\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 9.6.8 Polymer electrolyte membrane fuel cellsReferenceExercises10 Role of materials to advanced nuclear energy\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Abstract10.1 Fission and fusion technologies10.1.1 Nuclear reactors\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.1.2 Nuclear power fuel resources (fuel cycle)\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.1.3 Fusion energy\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.1.3.1 Magnetic fusion energy\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.1.3.2 Inertial fusion energy10.2 Materials selection criteria\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.1 General considerations\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2 General mechanical properties\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2.1 Fabricability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2.2 Dimension stability\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2.3 Corrosion resistance\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.2.4 Heat transfer properties\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.3 Special considerations\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.3.1 Neutronic properties\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.3.2 Susceptibility to induced radioactivity\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.2.3.3 Radiation stability10.3 Materials for reactor components\u00a010.3.1 Structure and fuel cladding materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.1 Advanced radiation resistant structural materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.1.1 Ultrahigh strength alloys\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.1.1 Ultrahigh toughness ceramic composites\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.2 Advanced refractory, ceramic, graphitic or coated materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.3 Corrosion and damage resistant materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.4 Pressure vessel steel\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.4.1 Corrosion resistant nickel base alloys\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.4.2 Dimensionally stable zirconium fuel cladding\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.1.5 Ultra high temperature resistance structural materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.2 Moderators and reflectors\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a010.3.3 Control materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.4 Coolants\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.3.5 Shielding materials\u00a0\u00a0\u00a0\u00a0 10.4 Nuclear fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a010.4.1 Metallic fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a010.4.2 Ceramic fuels\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0 10.5 Cladding materials^ Zirconium-based cladding 3-14\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.5.2 Iron-based cladding 3-19\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 10.5.3 Advanced gas-cooled reactor cladding 3-19\u00a0\u00a0\u00a0\u00a0 10.6 Low energy nuclear reactions in condensed matter\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0 10.7 Advanced computational materials performance modeling\u00a0\u00a0\u00a0\u00a0\u00a0 References\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0 Exercises\u00a0\u00a0 11. Emerging materials for energy harvesting11. 1 Introduction11.2 Thermoelectric Materials11.2.1 Characterizations of thermoelectric Materials11.2.2 Structures\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Oxides and SilicidesHalf-Heusler compoundsSkutterudite Materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Clatherate Materials11.2.3 PropertiesThermal ConductivityFermi SurfaceMorphology\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.2.4 Nano-materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.2.5 Applications11.3 Piezoelectric Materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.3.1 Fundamentals of piezoelectricity\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.3.2 Equivalent circuit of a piezoelectric harvester\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.3.4 Advances of piezoelectric materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Ceramics \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Single crystals \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Polymers\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Composites\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.3.5 Energy harvesting piezoelectric devices\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a011.3.6 Applications11.4 Pyroelectric materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.1 The pyroelectric effect\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.2 Types of pyroelectric materials\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.3 Pyroelectric cycles for energy harvesting\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.4 Pyroelectric harvesting devices\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.4.5 Applications11.5 Magnetic Induction system \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 11.5.1 Architecture and Operational Mechanism11.5.2 Magnet-through-coil Induction 11.5.2.1 Geometry 11.5.2.2 Magnetic flux Generated by the Bar Magnet11.5.2.3 Coil Inductance and Resistance 11.5.2.4 Voltage and Power Generation 11.5.3 Magnet-across-coils Induction 11.5.3.1 Geometry 11.5.3.2 Magnetic Field Generated by the Magnets11.5.3.3 Magnetic Field Generated by Coil Current11.5.3.4 Coil Self-Inductance, Mutual Inductance, and Resistance11.5.3.5 Voltage and Power Generation 11.5.4 Magnetic materials 11.5.5 Magnetic devices11.5.6 Applications\u00a0\u00a0\u00a0\u00a0\u00a0 11.6 Mechanoelectric energy harvesting materials\u00a0\u00a0\u00a0\u00a0\u00a0 References\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0 Exercises\u00a0\u00a0 12 Perspectives and future trends\u00a0\u00a0\u00a0\u00a0 12.1 Sustainability 12.1.1 Efficient use of energy-intensive materials 12.1.2 Retention of strategic materials12.1.3 Extraction technologies to recycle strategic materials12.1.4 Green manufacturing and energy production processes12.1.5 Mitigation of negative impacts of energy technology and economic growth\u00a0\u00a0\u00a0 12.2 Metamaterials and nanomaterials for energy systems\u00a0\u00a0 \u00a0\u00a0\u00a0 12.3 Artificial photosynthesis\u00a0\u00a0\u00a0 12.4 Structural power composites\u00a0\u00a0\u00a0 12.5 Future energy storage materials\u00a0\u00a0\u00a0 12.6 Hybrid Alternative Energy Systems12.6.1 Combining alternative energy components 12.6.2 Uses for hybrid energy systems12.6.3 Solar and wind power combinations12.6.4 Pumped-storage and wind generated hydroelectricity12.6.5 Harvesting zero-point energy from the vacuum12.6.6 Combined energy harvesting techniques\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Reference\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Exercises","merchants_number":2,"ean":9783319980010,"category_id":103,"size":null,"min_price":143,"low_price_merchant_id":70255345,"ID":4749383,"merchants":["euniverse","dodax"],"brand":"undefined","slug":"introduction-to-materials-for-advanced-energy-systems","url":"\/unterhaltung\/produkt\/introduction-to-materials-for-advanced-energy-systems\/","low_price_merchant_name":"eUniverse"}
undefined
Aerogel Nanoparticle Coated Turnout Gear:
The book discusses an exceptional use of an extraordinary material in a new field. While the era of nano technology is knocking our door, novel mat...
undefined
Mathematical Modeling of Structured Reactors
A Challenging application for monolithic reactors that has attracted much consideration in the mid and late 90''s Is the development of high-temper...
undefined
Friction Resistant Composite Materials
With the development of cars, tractors, railway vehicles, and with growing requirements on speed, performance and reliability, the demands on devel...
undefined
Space Shuttle Columbia Disaster
High Quality Content by WIKIPEDIA articles! The Space Shuttle Columbia disaster occurred on February 1, 2003, when the Space Shuttle Columbia disin...
undefined
Novec 1230
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Novec 1230, C6F12O,...
undefined
Tarantula
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Scientific research...
undefined
MINIMUM QUANTITY LUBRICATION GRINDING USIN...
Grinding is widely used in the manufacture of components requiring fine tolerances and smooth finishes, however, it is recognized as one of the mos...
undefined
Armor-piercing shot and shell
High Quality Content by WIKIPEDIA articles! An armor-piercing shell is a type of ammunition designed to penetrate armor. From the 1860s to 1950s, a...
undefined
Fire Hazard Assessment of Lithium Ion Batt...
Providing a concise overview of lithium-ion (Li-ion) battery energy storage systems (ESSs), this book also presents the full-scale fire testing of ...
undefined
Vaccines for Invasive Fungal Infections
Part I: Discovery and Testing of Vaccine Candidates 1. Mouse Immunization with Radioattenuated Yeast Cells of Paracoccidioides brasiliensis ...
undefined
Introduction to Materials for Advanced Ene...
Preface 1 Materials based solutions to advanced energy systems Abstract1.1 Advanced energy technology and contemporary issues 1.1.1 ...