Preface 1 Materials based solutions to advanced energy systems Abstract1.1 Advanced energy technology and contemporary issues 1.1.1 Challenges and concerns 1.1.2 The role of the advanced materials1.1.3 Solutions for future energy systems 1.2 Fundamentals of energy systems1.2.1 Energy and service1.2.2 Energy process characterization1.2.2.1 The laws of thermodynamics 1.2.2.2 Macroscopic and microscopic energy systems1.2.2.3 Entropy and enthalpy1.2.2.4 Chemical kinetics1.2.2.5 Energy availability 1.2.3 Energy calculations and accounting1.2.3.1 Energy efficiency1.2.3.2 Heating values1.2.4 General energy devices1.2.4.1 Conversion devices1.2.4.2 Energy storage1.2.4.3 Systems engineering1.2.4.4 Electricity1.2.5 Sustainable energy1.3 Materials development for advanced energy systems1.3.1 Functional surface technologies1.3.2 Materials integration in sustainable energy systems1.3.3 Higher-performance materials1.3.4 Sustainable manufacturing of materials1.3.5 Materials and process development acceleration tools 1.4 Summary Reference Exercises2 Fundamentals of materials used in energy systems Abstract2.1 Structures of solids2.1.1 Atomic structures2.1.2 Crystal structures2.1.2.1 Structures for elements2.1.2.2 Structures for compounds2.1.2.3 Solid solutions2.1.3 Crystal diffraction2.1.3.1 Phase difference and Bragg's law2.1.3.2 Scattering2.1.3.3 Reciprocal space2.1.3.4 Wave vector representation2.1.4 Defects in solids2.1.4.1 Point defects2.1.4.2 Line defects2.1.4.2.1 Edge dislocations2.1.4.2.2 Screw dislocations2.1.4.2.3 Burger's vector and burger circuit2.1.4.2.4 Dislocation motion2.1.4.3 Planar defects2.1.4.3.1 Grain boundaries2.1.4.3.2 Twin boundaries2.1.4.4 Three-dimensional defects2.1.5 Diffusion in solids2.1.5.1 Atomic theory 2.1.5.2 Random walk2.1.5.3 Other mass transport mechanisms2.1.5.3.1 Permeability versus diffusion2.1.5.3.2 Convection versus diffusion2.1.5.4 Mathematics of diffusion2.1.5.4.1 Steady state diffusion2.1.5.4.2 Non-steady state diffusion2.1.6 Electronic structure of solids2.1.6.1 Waves and electrons2.1.6.1.2 Representation of waves 2.1.6.1.2 Matter waves 2.1.6.1.3 Superposition 2.1.6.1.4 Electron waves 2.1.6.2 Quantum mechanics 2.1.6.3 Electron energy band representations 2.1.6.4 Real energy band structures 2.1.6.5 Other aspects of electron energy band structure 2.2 Phase equilibria2.2.1 The Gibbs phase rule2.2.1.1 The phase rule on equilibrium among phases2.2.1.2 Applications of the phase rule2.2.1.3 Construction of phase diagrams2.2.1.4 The tie line principle2.2.1.5 The lever rule 2.2.2 Nucleation and growth of phases2.2.2.1 Thermodynamics of phase transformations2.2.2.2 Nucleation2.3 Mechanical properties2.3.1 Elasticity relationships2.3.1.1 Ture versus engineering strain2.3.1.2 Nature of elasticity and Young's Modulus2.3.1.3 Hook's law2.3.1.4 Poisson's ratio2.3.1.5 Normal forces2.3.2 Plasticity observations2.3.3 Role of dislocation in deformation of crystalline materials2.3.4 Deformation of noncrystalline materials 2.3.4.1 Thermal behavior of amorphous solids 2.3.4.2 Time-dependent deformation of amorphous materials 2.3.4.3 Models for network2.3.4.4 Elastomers2.4 Electronic properties of materials2.4.1 Occupation of electronic states 2.4.1.1 Density of states function2.4.1.2 The Fermi-Dirac distribution function 2.4.1.3 Occupancy of electronic states 2.4.2 Position of the Fermi energy 2.4.3 Electronic properties of metals2.4.3.1 Free electron theory for electrical conduction 2.4.3.2 Quantum theory of electronic conduction 2.4.3.3 Superconductivity 2.4.4 Semiconductors 2.4.4.1 Intrinsic semiconductors 2.4.4.2 Extrinsic semiconductors 2.4.4.3 Semiconductor measurements 2.4.5 Electrical behavior of organic materials 2.4.6 Junctions and devices and the nanoscale2.4.6.1 Junctions 2.4.6.1.1 Metal-metal junctions 2.4.6.1.2 Metal-semiconductor junctions 2.4.6.1.3 Semiconductor-semiconductor PN junctions 2.4.6.2 Selected devices 2.4.6.2.1 Passive devices 2.4.6.2.2 Active devices 2.4.6.3 Nanostructures and nanodevices 2.4.6.3.1 Heterojunction nanostructures 2.4.6.3.2 2-D and 3-D nanostructures 2.5 Computational modeling of materials2.5.1 The challenge of complexity2.5.2 Materials design with predictive capability2.5.3 Materials modeling approaches2.6 Advanced experimental techniques for materials characterization2.6.1 Dynamic mechanical spectroscopy2.6.2 Nanoindentation2.6.3 Light microscopy2.6.4 Electron microscopy2.6.5 Atom probe tomography2.6.6 Advanced X-ray characterization2.6.7 Neutron scattering2.7 Integrated materials process control 2.7.1 Process control and its constituents2.7.1.1 Sensing techniques2.7.1.2 Input parameters for combustion control2.7.2 Diagnostic techniques2.3.2.1 Optical diagnostics2.3.2.2 Solid-state sensors2.8 Summary Reference Exercises 3 Advanced materials enable energy production from fossil fuels Abstract 3.1 Materials technology status and challenges in fossil energy systems3.1.1 Boilers3.1.2 Steam turbines3.1.3 Gas turbines3.1.4 Gasifiers3.1.5 CO2 capture and storage3.1.6 Perspectives 3.2 Materials for ultra-supercritical applications 3.2.1 High temperature alloys 3.2.2 Advanced refractory materials for slagging gasifiers 3.2.3 Breakthrough materials 3.3 Coatings and protection materials for steam system3.3.1 High temperature and high pressure coatings 3.3.2 Oxygen ion selective ceramic membranes for carbon capture 3.4 Materials for deep oil and gas well drilling and construction 3.4.1 High stress and corrosion resistant propping agents 3.4.2 Erosion- and corrosion-resistant coatings 3.4.3 Wear resistant coatings 3.4.4 High strength and corrosion resistant alloys for use in well casings and deep well drill pipe 3.5 Materials for sensing in harsh environments References Exercises4 Materials-based solutions to solar energy system Abstract4.1 Solar energy technologies4.1.1 Photovoltaic technologies4.1.1.1 Residential photovoltaic4.1.1.2 Utility-scale flat-plate thin film photovoltaic4.1.1.3 Utility-scale photovoltaic concentrators4.1.2 Solar thermal technologies4.1.2.1 Unglazed collectors4.1.2.2 Glazed collectors4.1.2.3 Parabolic trough4.1.2.4 Vacuum tube collectors4.1.2.5 Linear Fresnel lens reflectors4.1.2.6 Solar Stirling engine4.2 Photovoltaic materials and devices4.2.1 Crystalline silicon PV cells4.2.1.1 Mono-crystal silicon PVs4.2.1.2 Polycrystalline silicon PVs4.2.1.3 Emitter wrap-through cells4.2.2 Thin-film PV cells4.2.2.1 Amorphous Silicon Cells4.2.2.1.1 Amorphous-Si, double or triple junctions4.2.2.1.2 Tandem amorphous-Si and multi-crystalline-Si4.2.2.2 Ultra-thin silicon wafers4.2.2.3 Cadmium telluride and cadmium sulphide4.2.2.4 Copper indium selenide and copper indium gallium selenide4.2.3 Compound semiconductor PV cells4.2.3.1 Space PV cells 4.2.3.2 Light absorbing dyes 4.2.3.3 Organic and polymer PV 4.2.3.4 Flexible plastic organic transparent cells 4.2.4 Nanotechnology for PV cell fabrication 4.2.4.1 Silicon nanowires 4.2.4.2 Carbon nanotubes 4.2.4.3 Graphene-based solar cells 4.2.4.4 Quantum dots 4.2.4.5 Hot carrier solar cell 4.2.4.6 Nanoscale surfaces reduce reflection and increase capture of the full spectrum of sunlight4.2.5 Hybrid solar cells4.2.5.1 Hybrid organic-metal PVs 4.2.5.2 Hybrid organic-organic PVs 4.2.6 Inexpensive plastic solar cells or panels that are mounted on curved surfaces4.3 Advanced materials for solar thermal collectors4.3.1 Desirable features of solar thermal collector materials4.3.1.1 Transparent cover4.3.1.2 Insulation4.3.1.3 Evacuated-tube collectors4.3.2 Polymer materials in solar thermal collectors4.3.3 Corrosion resistant materials in contact with molten salts4.4 Reflecting materials for solar cookers4.5 Optical materials for absorbers4.5.1 Metals4.5.2 Selective coatings4.5.2.1 Intrinsic absorption coatings4.5.2.2 Semiconductor-metal tandems4.5.2.3 Multilayer absorbers4.5.2.4 Metal-dielectric composite coatings4.5.2.5 Surface texturing4.5.2.6 Selectively solar-transmitting coating on a blackbody-like absorber4.5.3 Heat pipes4.5.4 Metamaterial solar absorbers4.5.4.1 Metal-dielectric nanocomposites with tailored plasmonic response 4.5.4.2 Light weight broadband nanocomposite perfect absorbers4.3.4.3 Prospects and future trends4.6 Thermal energy storage materials4.6.1 Sensible thermal energy storage4.6.2 Underground thermal energy storage4.6.3 Phase change materials4.6.4 Thermal energy storage via chemical reactions Reference Exercises5 Advanced materials enable renewable geothermal energy capture and generation Abstract 5.1 Geothermal technologies5.1.1 Geothermal resources for geothermal energy development5.1.2 Geothermal electricity5.1.3 Enhanced geothermal systems and other advanced geothermal technologies5.1.4 Direct use of geothermal energy5.2 Hard materials for downhole rock drilling5.3 Advanced cements for geothermal wells5.4 Geothermal heat pumps5.4.1 Pumping materials5.4.2 Pumping technology5.4.3 Heat pump applications5.5 Materials for transmission pipelines and distribution netorks5.6 Materials for heat exchange systems5.6.1 Heat exchange fluids5.6.2 Heat exchanger coatings5.6.3 Polymer heat exchangers5.6.4 Heat convector materials5.6.5 Refrigeration materials for cooling systems 5.7 Corrosion protection and material selection for geothermal systems Reference Exercises6 Advanced materials enable renewable wind energy capture and generation Abstract 6.1 Wind resources 6.1.1 Wind quality 6.1.2 Variation of wind speed with elevation 6.1.3 Air density 6.1.4 Wind forecasting 6.1.5 Offshore wind 6.1.6 Maximum wind turbine efficiency: The Betz ratio6.2 Materials requirements of wind machinery and generating systems 6.2.1 Driven components 6.2.1.1 Shafts 6.2.1.2 Bearings 6.2.1.3 Couplings 6.2.1.4 Gear boxes 6.2.1.5 Generators 6.2.2 Tower 6.2.2.1 Tower structure 6.2.2.2 Tower flange 6.2.2.3 Power electronics 6.2.3 Rotor 6.2.3.1 Blade 6.2.3.2 Blade extender 6.2.3.3 Hub 6.2.3.4 Pitch drive 6.2.4 Nacelle 6.2.4.1 Case 6.2.4.2 Frame 6.2.4.3 Anemometer 6.2.4.4 Brakes 6.2.4.5 Controller 6.2.4.6 Convertor 6.2.4.7 Cooling system 6.2.4.8 Sensors 6.2.4.9 Yaw drive 6.2.5 Balance-of-station subsystems 6.2.6 System design challenges6.3 Wind turbine types and structures6.3.1 Horizontal-axis wind turbines6.3.2 Vertical-axis wind turbines6.3.3 Upwind wind turbines and downwind wind turbines6.3.4 Darrieus turbines6.3.5 Savonius turbines6.3.6 Giant Multi-megawatt turbines6.4 General materials used in wind turbines 6.4.1 Cast iron and steel 6.4.2 Composite materials 6.4.3 Rare earth elements in magnet 6.4.4 Copper 6.4.5 Reinforced concrete6.5 Light weight composite materials for wind turbine blades 6.5.1 Reinforcement 6.5.2 Matrix 6.6 Smart and stealth wind turbine blade materials6.7 Permanent-magnet generators for wind turbine applications6.8 Future prospects Reference Exercises7 Advanced materials for ocean energy and hydropower7.1 Materials requirements for ocean energy technologies7.1.1 Tidal power7.1.2 Ocean current7.1.3 Wave energy7.1.4 Ocean thermal energy7.1.5 Salinity gradient7.2 Advanced materials and devices for ocean energy 7.2.1 Structure & prime mover 7.2.2 Foundations & moorings 7.2.3 Power take off 7.2.4 Control 7.2.5 Installation 7.2.6 Connection 7.2.7 Operations & maintenance7.3 Wave energy converters 7.3.1 Types of WEC7.4 Tidal energy converters 7.4.1. Types of TEC 7.4.2. Further Permutations7.5 Arrays7.6 Challenges faced by the ocean energy 7.6.1 Predictability 7.6.2 Manufacturability 7.6.3 Installability 7.6.4 Operability 7.6.5 Survivability 7.6.6 Reliability 7.6.7 Affordability7.7 Materials requirements for hydropower system 7.7.1 Retaining structure materials for dams and dikes 7.7.2 Structural materials and surface coatings for turbines runners, draft tubes and penstocks Reference Exercises8 Biomass for bioenergy8.1 Materials requirements for biomass technologies 8.1.1 Biomass for power and heat 8.1.2 Biogas 8.1.3 Biofuels 8.1.4 Biorefineries8.2 Corrosion resistant materials for biofuels 8.2.1 Metal and its alloys 8.2.2 Elastomers8.3 Nanocatalysts for conversion of biomass to biofuel 8.3.1 Nanocatalysts for biomass gasification 8.3.2 Nanocatalysts for biomass liquefaction 8.4 Coal-to-liquid fuels 8.4.1 Basic chemistry 8.4.2 CTL technology options8.5 Materials for combustion processes8.6 Materials for capturing CO2 for using as a nutrient to cultivate alga8.7 Materials for water filtration and desalinationReferenceExercises9 Hydrogen and fuel cells9.1 Introduction9.2 Hydrogen generation technology 9.2.1 Steam methane reforming 9.2.2 Electrolysis9.3 Hydrogen conversion and storage technology 9.3.1 Fuel cells 9.3.2 Hydrogen gas turbines 9.3.3 Compressed hydrogen gas 9.3.4 Liquid hydrogen storage in tanks 9.3.5 Physisorption of hydrogen and its storage in solid structures9.4 Materials-based hydrogen storage 9.4.1 Nanoconfined hydrogen storage materials 9.4.2 Complex hydrides 9.4.3 Reversible hydrides 9.4.4 Hydrogen storage in carbonaceous materials 9.4.5 Hydrogen storage in zeolites and glass microspheres 9.4.6 Hydrogen storage in organic frameworks 9.4.7 Hydrogen Storage in Polymers 9.4.8 Hydrogen storage in formic acid9.5 Fuel cell materials 9.5.1 Anode Materials 9.5.2 Cathode Materials 9.5.3 Electrolytes 9.5.4 Catalysts (Catalysts for the oxygen reduction reaction) 9.5.5 Sputtering Targets 9.5.6 Current Collectors (Higher-temperature proton conducting materials) 9.5.7 Support Materials (Low-cost materials resistant to hydrogen-assisted cracking and embrittlement)9.6 Applications of fuel cells9.6.1 Alkaline Fuel Cells9.6.2 Proton Exchange Membrane Fuel Cells 9.6.3 Direct Methanol Fuel Cells 9.6.4 Phosphoric Acid Fuel Cells 9.6.5 Molten Carbonate Fuel Cells 9.6.6 Solid Oxide Fuel Cells 9.6.7 Solid oxide fuel cells 9.6.8 Polymer electrolyte membrane fuel cellsReferenceExercises10 Role of materials to advanced nuclear energy Abstract10.1 Fission and fusion technologies10.1.1 Nuclear reactors 10.1.2 Nuclear power fuel resources (fuel cycle) 10.1.3 Fusion energy 10.1.3.1 Magnetic fusion energy 10.1.3.2 Inertial fusion energy10.2 Materials selection criteria 10.2.1 General considerations 10.2.2 General mechanical properties 10.2.2.1 Fabricability 10.2.2.2 Dimension stability 10.2.2.3 Corrosion resistance 10.2.2.4 Heat transfer properties 10.2.3 Special considerations 10.2.3.1 Neutronic properties 10.2.3.2 Susceptibility to induced radioactivity 10.2.3.3 Radiation stability10.3 Materials for reactor components 10.3.1 Structure and fuel cladding materials 10.3.1.1 Advanced radiation resistant structural materials 10.3.1.1.1 Ultrahigh strength alloys 10.3.1.1.1 Ultrahigh toughness ceramic composites 10.3.1.2 Advanced refractory, ceramic, graphitic or coated materials 10.3.1.3 Corrosion and damage resistant materials 10.3.1.4 Pressure vessel steel 10.3.1.4.1 Corrosion resistant nickel base alloys 10.3.1.4.2 Dimensionally stable zirconium fuel cladding 10.3.1.5 Ultra high temperature resistance structural materials 10.3.2 Moderators and reflectors 10.3.3 Control materials 10.3.4 Coolants 10.3.5 Shielding materials 10.4 Nuclear fuels 10.4.1 Metallic fuels 10.4.2 Ceramic fuels 10.5 Cladding materials^ Zirconium-based cladding 3-14 10.5.2 Iron-based cladding 3-19 10.5.3 Advanced gas-cooled reactor cladding 3-19 10.6 Low energy nuclear reactions in condensed matter 10.7 Advanced computational materials performance modeling References Exercises 11. Emerging materials for energy harvesting11. 1 Introduction11.2 Thermoelectric Materials11.2.1 Characterizations of thermoelectric Materials11.2.2 Structures Oxides and SilicidesHalf-Heusler compoundsSkutterudite Materials Clatherate Materials11.2.3 PropertiesThermal ConductivityFermi SurfaceMorphology 11.2.4 Nano-materials 11.2.5 Applications11.3 Piezoelectric Materials 11.3.1 Fundamentals of piezoelectricity 11.3.2 Equivalent circuit of a piezoelectric harvester 11.3.4 Advances of piezoelectric materials Ceramics Single crystals Polymers Composites 11.3.5 Energy harvesting piezoelectric devices 11.3.6 Applications11.4 Pyroelectric materials 11.4.1 The pyroelectric effect 11.4.2 Types of pyroelectric materials 11.4.3 Pyroelectric cycles for energy harvesting 11.4.4 Pyroelectric harvesting devices 11.4.5 Applications11.5 Magnetic Induction system 11.5.1 Architecture and Operational Mechanism11.5.2 Magnet-through-coil Induction 11.5.2.1 Geometry 11.5.2.2 Magnetic flux Generated by the Bar Magnet11.5.2.3 Coil Inductance and Resistance 11.5.2.4 Voltage and Power Generation 11.5.3 Magnet-across-coils Induction 11.5.3.1 Geometry 11.5.3.2 Magnetic Field Generated by the Magnets11.5.3.3 Magnetic Field Generated by Coil Current11.5.3.4 Coil Self-Inductance, Mutual Inductance, and Resistance11.5.3.5 Voltage and Power Generation 11.5.4 Magnetic materials 11.5.5 Magnetic devices11.5.6 Applications 11.6 Mechanoelectric energy harvesting materials References Exercises 12 Perspectives and future trends 12.1 Sustainability 12.1.1 Efficient use of energy-intensive materials 12.1.2 Retention of strategic materials12.1.3 Extraction technologies to recycle strategic materials12.1.4 Green manufacturing and energy production processes12.1.5 Mitigation of negative impacts of energy technology and economic growth 12.2 Metamaterials and nanomaterials for energy systems 12.3 Artificial photosynthesis 12.4 Structural power composites 12.5 Future energy storage materials 12.6 Hybrid Alternative Energy Systems12.6.1 Combining alternative energy components 12.6.2 Uses for hybrid energy systems12.6.3 Solar and wind power combinations12.6.4 Pumped-storage and wind generated hydroelectricity12.6.5 Harvesting zero-point energy from the vacuum12.6.6 Combined energy harvesting techniques Reference Exercises... Mehr
Wir senden Dir eine Email, sobald das Produkt zum gewünschten Preis erhältlich ist.